Analytic solutions of a nonlinear two variables difference system whose eigenvalues are both 1
Annales Polonici Mathematici, Tome 102 (2011) no. 2, pp. 143-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For nonlinear difference equations, it is difficult to obtain analytic solutions, especially when all the eigenvalues of the equation are of absolute value 1.We consider a second order nonlinear difference equation which can be transformed into the following simultaneous system of nonlinear difference equations: $$ \begin{cases} x(t+1) = X(x(t),y(t)), \\ y(t+1) = Y(x(t), y(t)), \end{cases} $$ where $X(x,y)= \lambda_1 x+ \mu y +\sum_{i+j \geq 2} c_{ij} x^i y^j$, $Y(x,y)= \lambda_2 y+\sum_{i+j \geq 2}$ $d_{ij} x^i y^j$ satisfy some conditions. For these equations, we have obtained analytic solutions in the cases “$|\lambda_1| \ne 1$ or $|\lambda_2| \ne 1$” or “$\mu=0$” in earlier studies. In the present paper, we will prove the existence of an analytic solution for the case $\lambda_1 = \lambda_2 = 1$ and $\mu=1$.
DOI : 10.4064/ap102-2-4
Keywords: nonlinear difference equations difficult obtain analytic solutions especially eigenvalues equation absolute value nbsp consider second order nonlinear difference equation which transformed following simultaneous system nonlinear difference equations begin cases end cases where lambda sum geq j lambda sum geq j satisfy conditions these equations have obtained analytic solutions cases lambda lambda earlier studies present paper prove existence analytic solution lambda lambda

Mami Suzuki 1

1 Department of Mathematics College of Liberal Arts J. F. Oberlin University 3758 Tokiwa-cho, Machida-City Tokyo, 194-0294, Japan
@article{10_4064_ap102_2_4,
     author = {Mami Suzuki},
     title = {Analytic solutions of a nonlinear two variables difference system whose 
eigenvalues are both 1},
     journal = {Annales Polonici Mathematici},
     pages = {143--159},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2011},
     doi = {10.4064/ap102-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-4/}
}
TY  - JOUR
AU  - Mami Suzuki
TI  - Analytic solutions of a nonlinear two variables difference system whose 
eigenvalues are both 1
JO  - Annales Polonici Mathematici
PY  - 2011
SP  - 143
EP  - 159
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-4/
DO  - 10.4064/ap102-2-4
LA  - en
ID  - 10_4064_ap102_2_4
ER  - 
%0 Journal Article
%A Mami Suzuki
%T Analytic solutions of a nonlinear two variables difference system whose 
eigenvalues are both 1
%J Annales Polonici Mathematici
%D 2011
%P 143-159
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-4/
%R 10.4064/ap102-2-4
%G en
%F 10_4064_ap102_2_4
Mami Suzuki. Analytic solutions of a nonlinear two variables difference system whose 
eigenvalues are both 1. Annales Polonici Mathematici, Tome 102 (2011) no. 2, pp. 143-159. doi : 10.4064/ap102-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-4/

Cité par Sources :