Analytic solutions of a nonlinear two variables difference system whose
eigenvalues are both 1
Annales Polonici Mathematici, Tome 102 (2011) no. 2, pp. 143-159
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For nonlinear difference equations, it is difficult to obtain
analytic solutions, especially when all the
eigenvalues of
the equation
are of absolute value 1.We consider
a second order nonlinear difference equation which can be transformed into
the following simultaneous system of nonlinear difference
equations:
$$
\begin{cases}
x(t+1) = X(x(t),y(t)), \\
y(t+1) = Y(x(t), y(t)),
\end{cases}
$$
where
$X(x,y)= \lambda_1 x+ \mu y +\sum_{i+j \geq 2} c_{ij} x^i y^j$,
$Y(x,y)= \lambda_2 y+\sum_{i+j \geq 2}$ $d_{ij} x^i y^j$ satisfy some conditions.
For these equations, we have obtained analytic solutions in the cases “$|\lambda_1| \ne 1$
or $|\lambda_2| \ne 1$” or “$\mu=0$” in earlier studies. In the present
paper, we will prove the existence of an analytic solution
for the case
$\lambda_1 = \lambda_2 = 1$ and $\mu=1$.
Keywords:
nonlinear difference equations difficult obtain analytic solutions especially eigenvalues equation absolute value nbsp consider second order nonlinear difference equation which transformed following simultaneous system nonlinear difference equations begin cases end cases where lambda sum geq j lambda sum geq j satisfy conditions these equations have obtained analytic solutions cases lambda lambda earlier studies present paper prove existence analytic solution lambda lambda
Affiliations des auteurs :
Mami Suzuki 1
@article{10_4064_ap102_2_4,
author = {Mami Suzuki},
title = {Analytic solutions of a nonlinear two variables difference system whose
eigenvalues are both 1},
journal = {Annales Polonici Mathematici},
pages = {143--159},
publisher = {mathdoc},
volume = {102},
number = {2},
year = {2011},
doi = {10.4064/ap102-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-4/}
}
TY - JOUR AU - Mami Suzuki TI - Analytic solutions of a nonlinear two variables difference system whose eigenvalues are both 1 JO - Annales Polonici Mathematici PY - 2011 SP - 143 EP - 159 VL - 102 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-4/ DO - 10.4064/ap102-2-4 LA - en ID - 10_4064_ap102_2_4 ER -
%0 Journal Article %A Mami Suzuki %T Analytic solutions of a nonlinear two variables difference system whose eigenvalues are both 1 %J Annales Polonici Mathematici %D 2011 %P 143-159 %V 102 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-4/ %R 10.4064/ap102-2-4 %G en %F 10_4064_ap102_2_4
Mami Suzuki. Analytic solutions of a nonlinear two variables difference system whose eigenvalues are both 1. Annales Polonici Mathematici, Tome 102 (2011) no. 2, pp. 143-159. doi: 10.4064/ap102-2-4
Cité par Sources :