Representations of non-negative polynomials via KKT ideals
Annales Polonici Mathematici, Tome 102 (2011) no. 2, pp. 101-109
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper studies the representation of a non-negative polynomial $f$ on a non-compact semi-algebraic set $K$ modulo its KKT (Karush–Kuhn–Tucker) ideal. Under the assumption that $f$ satisfies the boundary Hessian conditions (BHC) at each zero of $f$ in $K$, we show that $f$ can be represented as a sum of squares (SOS) of real polynomials modulo its KKT ideal if $f\ge 0$ on $K$.
Keywords:
paper studies representation non negative polynomial non compact semi algebraic set modulo its kkt karush kuhn tucker ideal under assumption satisfies boundary hessian conditions bhc each zero represented sum squares sos real polynomials modulo its kkt ideal
Affiliations des auteurs :
Dang Tuan Hiep 1
@article{10_4064_ap102_2_1,
author = {Dang Tuan Hiep},
title = {Representations of non-negative polynomials via {KKT} ideals},
journal = {Annales Polonici Mathematici},
pages = {101--109},
publisher = {mathdoc},
volume = {102},
number = {2},
year = {2011},
doi = {10.4064/ap102-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-1/}
}
TY - JOUR AU - Dang Tuan Hiep TI - Representations of non-negative polynomials via KKT ideals JO - Annales Polonici Mathematici PY - 2011 SP - 101 EP - 109 VL - 102 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap102-2-1/ DO - 10.4064/ap102-2-1 LA - en ID - 10_4064_ap102_2_1 ER -
Dang Tuan Hiep. Representations of non-negative polynomials via KKT ideals. Annales Polonici Mathematici, Tome 102 (2011) no. 2, pp. 101-109. doi: 10.4064/ap102-2-1
Cité par Sources :