Normality criteria and multiple values II
Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 91-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\cal F$ be a family of meromorphic functions defined in a
domain $D$, let $\psi$ $(\not\equiv 0, \infty)$ be a meromorphic
function in $D$, and $k$ be a positive integer. If, for every $f\in
\cal F$ and $z\in D$, (1) $f\neq 0$, $f^{(k)}\neq 0$; (2) all zeros
of $f^{(k)}-\psi$ have multiplicities at least $(k+2)/k$; (3) all
poles of $\psi$ have multiplicities at most $k$, then $\cal F$ is
normal in $D$.
Keywords:
cal family meromorphic functions defined domain psi equiv infty meromorphic function positive integer every cal neq neq zeros psi have multiplicities least poles psi have multiplicities cal normal
Affiliations des auteurs :
Yan Xu 1 ; Jianming Chang 2
@article{10_4064_ap102_1_9,
author = {Yan Xu and Jianming Chang},
title = {Normality criteria and multiple values {II}},
journal = {Annales Polonici Mathematici},
pages = {91--99},
publisher = {mathdoc},
volume = {102},
number = {1},
year = {2011},
doi = {10.4064/ap102-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-9/}
}
Yan Xu; Jianming Chang. Normality criteria and multiple values II. Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 91-99. doi: 10.4064/ap102-1-9
Cité par Sources :