A criterion for pure unrectifiability of sets (via universal vector bundle)
Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 73-78.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $m, n$ be positive integers such that $m n$ and let $G(n,m)$ be the Grassmann manifold of all $m$-dimensional subspaces of $\mathbb{R}^n$. For $V\in G(n,m)$ let $\pi_V$ denote the orthogonal projection from $\mathbb{R}^n$ onto $V$. The following characterization of purely unrectifiable sets holds. Let $A$ be an $\mathcal H^m$-measurable subset of $\mathbb{R}^n$ with $\mathcal H^m(A)\infty$. Then $A$ is purely $m$-unrectifiable if and only if there exists a null subset $Z$ of the universal bundle $\{ (V,v) \mid V\in G(n,m),\, v\in V\}$ such that, for all $P\in A$, one has $\mathcal H^{m(n-m)}(\{ V\in G(n,m) \mid (V,\pi_V(P))\in Z\})>0$. One can replace “for all $P\in A$” by “for $\mathcal H^m$-a.e. $P\in A$”.
DOI : 10.4064/ap102-1-6
Keywords: positive integers grassmann manifold m dimensional subspaces mathbb denote orthogonal projection mathbb following characterization purely unrectifiable sets holds mathcal m measurable subset mathbb mathcal infty purely m unrectifiable only there exists null subset universal bundle mid has mathcal n m mid replace mathcal m a

Silvano Delladio 1

1 Dipartimento di Matematica Università di Trento Trento, Italy
@article{10_4064_ap102_1_6,
     author = {Silvano Delladio},
     title = {A criterion for pure unrectifiability of sets (via universal vector bundle)},
     journal = {Annales Polonici Mathematici},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2011},
     doi = {10.4064/ap102-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-6/}
}
TY  - JOUR
AU  - Silvano Delladio
TI  - A criterion for pure unrectifiability of sets (via universal vector bundle)
JO  - Annales Polonici Mathematici
PY  - 2011
SP  - 73
EP  - 78
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-6/
DO  - 10.4064/ap102-1-6
LA  - en
ID  - 10_4064_ap102_1_6
ER  - 
%0 Journal Article
%A Silvano Delladio
%T A criterion for pure unrectifiability of sets (via universal vector bundle)
%J Annales Polonici Mathematici
%D 2011
%P 73-78
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-6/
%R 10.4064/ap102-1-6
%G en
%F 10_4064_ap102_1_6
Silvano Delladio. A criterion for pure unrectifiability of sets (via universal vector bundle). Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 73-78. doi : 10.4064/ap102-1-6. http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-6/

Cité par Sources :