A criterion for pure unrectifiability of sets (via universal vector bundle)
Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 73-78
Let $m, n$ be positive integers such that $m n$ and let $G(n,m)$ be the
Grassmann manifold of all $m$-dimensional subspaces of $\mathbb{R}^n$. For $V\in G(n,m)$ let $\pi_V$ denote the orthogonal projection from $\mathbb{R}^n$ onto $V$. The following characterization of purely unrectifiable sets holds. Let $A$ be an
$\mathcal H^m$-measurable subset of $\mathbb{R}^n$ with $\mathcal H^m(A)\infty$.
Then $A$ is purely $m$-unrectifiable if and only if there exists a null subset $Z$ of the universal bundle $\{ (V,v) \mid V\in G(n,m),\, v\in V\}$ such that, for all $P\in A$, one has
$\mathcal H^{m(n-m)}(\{ V\in G(n,m) \mid (V,\pi_V(P))\in Z\})>0$.
One can replace “for all $P\in A$” by “for $\mathcal H^m$-a.e. $P\in A$”.
Keywords:
positive integers grassmann manifold m dimensional subspaces mathbb denote orthogonal projection mathbb following characterization purely unrectifiable sets holds mathcal m measurable subset mathbb mathcal infty purely m unrectifiable only there exists null subset universal bundle mid has mathcal n m mid replace mathcal m a
Affiliations des auteurs :
Silvano Delladio  1
@article{10_4064_ap102_1_6,
author = {Silvano Delladio},
title = {A criterion for pure unrectifiability of sets (via universal vector bundle)},
journal = {Annales Polonici Mathematici},
pages = {73--78},
year = {2011},
volume = {102},
number = {1},
doi = {10.4064/ap102-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-6/}
}
TY - JOUR AU - Silvano Delladio TI - A criterion for pure unrectifiability of sets (via universal vector bundle) JO - Annales Polonici Mathematici PY - 2011 SP - 73 EP - 78 VL - 102 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-6/ DO - 10.4064/ap102-1-6 LA - en ID - 10_4064_ap102_1_6 ER -
Silvano Delladio. A criterion for pure unrectifiability of sets (via universal vector bundle). Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 73-78. doi: 10.4064/ap102-1-6
Cité par Sources :