1Institute of Mathematics School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210046, China and School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223001, China 2Institute of Mathematics School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210046, China and College of Zhongbei Nanjing Normal University Nanjing, Jiangsu 210046, China
Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 51-71
Our main purpose is to establish the existence of
weak solutions of second order quasilinear elliptic systems
$$
\cases{\displaystyle
-{\mit\Delta}_p u+|u|^{p-2}u=f_{1\lambda_1}(x) |u|^{q-2 }u+\frac{2\alpha}{\alpha+\beta}g_\mu|u|^{\alpha-2}u|v|^\beta,\quad x\in {\mit\Omega},\cr
\displaystyle -{\mit\Delta}_p v+|v|^{p-2}v=f_{2\lambda_2}(x) |v|^{q-2} v
+\frac{2\beta}{\alpha+\beta}g_\mu|u|^\alpha|v|^{\beta-2}v,\quad x\in {\mit\Omega},\cr
u=v=0,\quad x\in \partial{\mit\Omega},}
$$
where $1 q p N$ and ${\mit\Omega}\subset \mathbb{R}^N$ is an
open bounded smooth domain. Here $\lambda_1, \lambda_2,
\mu\geq0$ and $f_{i\lambda_i}(x)=\lambda_if_{i+}(x)+f_{i-}(x)$$(i=1,2)$ are sign-changing functions, where
$f_{i\pm}(x)=\max\{\pm f_i(x),0\}$, $g_\mu(x)=a(x)+\mu b(x)$, and
${\mit\Delta}_p u=\hbox{div}(|\nabla
u|^{p-2}\nabla u)$ denotes the $p$-Laplace operator. We use variational methods.
Keywords:
main purpose establish existence weak solutions second order quasilinear elliptic systems cases displaystyle mit delta p lambda q frac alpha alpha beta alpha beta quad mit omega displaystyle mit delta p lambda q frac beta alpha beta alpha beta quad mit omega quad partial mit omega where mit omega subset mathbb bounded smooth domain here lambda lambda geq lambda lambda i sign changing functions where max mit delta hbox div nabla p nabla denotes p laplace operator variational methods
Affiliations des auteurs :
Honghui Yin 
1
;
Zuodong Yang 
2
1
Institute of Mathematics School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210046, China and School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223001, China
2
Institute of Mathematics School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210046, China and College of Zhongbei Nanjing Normal University Nanjing, Jiangsu 210046, China
@article{10_4064_ap102_1_5,
author = {Honghui Yin and Zuodong Yang},
title = {Multiplicity results for a class of concave-convex
elliptic systems involving sign-changing weight functions},
journal = {Annales Polonici Mathematici},
pages = {51--71},
year = {2011},
volume = {102},
number = {1},
doi = {10.4064/ap102-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-5/}
}
TY - JOUR
AU - Honghui Yin
AU - Zuodong Yang
TI - Multiplicity results for a class of concave-convex
elliptic systems involving sign-changing weight functions
JO - Annales Polonici Mathematici
PY - 2011
SP - 51
EP - 71
VL - 102
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-5/
DO - 10.4064/ap102-1-5
LA - en
ID - 10_4064_ap102_1_5
ER -
%0 Journal Article
%A Honghui Yin
%A Zuodong Yang
%T Multiplicity results for a class of concave-convex
elliptic systems involving sign-changing weight functions
%J Annales Polonici Mathematici
%D 2011
%P 51-71
%V 102
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-5/
%R 10.4064/ap102-1-5
%G en
%F 10_4064_ap102_1_5
Honghui Yin; Zuodong Yang. Multiplicity results for a class of concave-convex
elliptic systems involving sign-changing weight functions. Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 51-71. doi: 10.4064/ap102-1-5