Multiplicity results for a class of concave-convex
elliptic systems involving sign-changing weight functions
Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 51-71
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Our main purpose is to establish the existence of
weak solutions of second order quasilinear elliptic systems
$$
\cases{\displaystyle
-{\mit\Delta}_p u+|u|^{p-2}u=f_{1\lambda_1}(x) |u|^{q-2 }u+\frac{2\alpha}{\alpha+\beta}g_\mu|u|^{\alpha-2}u|v|^\beta,\quad x\in {\mit\Omega},\cr
\displaystyle -{\mit\Delta}_p v+|v|^{p-2}v=f_{2\lambda_2}(x) |v|^{q-2} v
+\frac{2\beta}{\alpha+\beta}g_\mu|u|^\alpha|v|^{\beta-2}v,\quad x\in {\mit\Omega},\cr
u=v=0,\quad x\in \partial{\mit\Omega},}
$$
where $1 q p N$ and ${\mit\Omega}\subset \mathbb{R}^N$ is an
open bounded smooth domain. Here $\lambda_1, \lambda_2,
\mu\geq0$ and $f_{i\lambda_i}(x)=\lambda_if_{i+}(x)+f_{i-}(x)$
$(i=1,2)$ are sign-changing functions, where
$f_{i\pm}(x)=\max\{\pm f_i(x),0\}$, $g_\mu(x)=a(x)+\mu b(x)$, and
${\mit\Delta}_p u=\hbox{div}(|\nabla
u|^{p-2}\nabla u)$ denotes the $p$-Laplace operator. We use variational methods.
Keywords:
main purpose establish existence weak solutions second order quasilinear elliptic systems cases displaystyle mit delta p lambda q frac alpha alpha beta alpha beta quad mit omega displaystyle mit delta p lambda q frac beta alpha beta alpha beta quad mit omega quad partial mit omega where mit omega subset mathbb bounded smooth domain here lambda lambda geq lambda lambda i sign changing functions where max mit delta hbox div nabla p nabla denotes p laplace operator variational methods
Affiliations des auteurs :
Honghui Yin 1 ; Zuodong Yang 2
@article{10_4064_ap102_1_5,
author = {Honghui Yin and Zuodong Yang},
title = {Multiplicity results for a class of concave-convex
elliptic systems involving sign-changing weight functions},
journal = {Annales Polonici Mathematici},
pages = {51--71},
publisher = {mathdoc},
volume = {102},
number = {1},
year = {2011},
doi = {10.4064/ap102-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-5/}
}
TY - JOUR AU - Honghui Yin AU - Zuodong Yang TI - Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions JO - Annales Polonici Mathematici PY - 2011 SP - 51 EP - 71 VL - 102 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-5/ DO - 10.4064/ap102-1-5 LA - en ID - 10_4064_ap102_1_5 ER -
%0 Journal Article %A Honghui Yin %A Zuodong Yang %T Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions %J Annales Polonici Mathematici %D 2011 %P 51-71 %V 102 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-5/ %R 10.4064/ap102-1-5 %G en %F 10_4064_ap102_1_5
Honghui Yin; Zuodong Yang. Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions. Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 51-71. doi: 10.4064/ap102-1-5
Cité par Sources :