Positive solutions and eigenvalue intervals of a singular
third-order boundary value problem
Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 25-37
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This paper studies positive solutions and eigenvalue intervals of a nonlinear third-order two-point boundary value problem. The nonlinear term is allowed to be singular with respect to both the time and space variables. By constructing a proper cone and applying the
Guo–Krasnosel'skii fixed point theorem, the eigenvalue intervals for which there exist one, two, three or infinitely many positive solutions are obtained.
Keywords:
paper studies positive solutions eigenvalue intervals nonlinear third order two point boundary value problem nonlinear term allowed singular respect time space variables constructing proper cone applying guo krasnoselskii fixed point theorem eigenvalue intervals which there exist three infinitely many positive solutions obtained
Affiliations des auteurs :
Qingliu Yao 1
@article{10_4064_ap102_1_3,
author = {Qingliu Yao},
title = {Positive solutions and eigenvalue intervals of a singular
third-order boundary value problem},
journal = {Annales Polonici Mathematici},
pages = {25--37},
year = {2011},
volume = {102},
number = {1},
doi = {10.4064/ap102-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-3/}
}
TY - JOUR AU - Qingliu Yao TI - Positive solutions and eigenvalue intervals of a singular third-order boundary value problem JO - Annales Polonici Mathematici PY - 2011 SP - 25 EP - 37 VL - 102 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap102-1-3/ DO - 10.4064/ap102-1-3 LA - en ID - 10_4064_ap102_1_3 ER -
Qingliu Yao. Positive solutions and eigenvalue intervals of a singular third-order boundary value problem. Annales Polonici Mathematici, Tome 102 (2011) no. 1, pp. 25-37. doi: 10.4064/ap102-1-3
Cité par Sources :