Quasianalytic perturbation of multi-parameter
hyperbolic polynomials and symmetric matrices
Annales Polonici Mathematici, Tome 101 (2011) no. 3, pp. 275-291
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper investigates hyperbolic polynomials with quasianalytic coefficients. Our main purpose is to prove factorization theorems for such polynomials, and next to generalize the results of K. Kurdyka and L. Paunescu about perturbation of analytic families of symmetric matrices to the quasianalytic setting.
Keywords:
paper investigates hyperbolic polynomials quasianalytic coefficients main purpose prove factorization theorems polynomials generalize results kurdyka paunescu about perturbation analytic families symmetric matrices quasianalytic setting
Affiliations des auteurs :
Krzysztof Jan Nowak 1
@article{10_4064_ap101_3_7,
author = {Krzysztof Jan Nowak},
title = {Quasianalytic perturbation of multi-parameter
hyperbolic polynomials and symmetric matrices},
journal = {Annales Polonici Mathematici},
pages = {275--291},
publisher = {mathdoc},
volume = {101},
number = {3},
year = {2011},
doi = {10.4064/ap101-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap101-3-7/}
}
TY - JOUR AU - Krzysztof Jan Nowak TI - Quasianalytic perturbation of multi-parameter hyperbolic polynomials and symmetric matrices JO - Annales Polonici Mathematici PY - 2011 SP - 275 EP - 291 VL - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap101-3-7/ DO - 10.4064/ap101-3-7 LA - en ID - 10_4064_ap101_3_7 ER -
%0 Journal Article %A Krzysztof Jan Nowak %T Quasianalytic perturbation of multi-parameter hyperbolic polynomials and symmetric matrices %J Annales Polonici Mathematici %D 2011 %P 275-291 %V 101 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap101-3-7/ %R 10.4064/ap101-3-7 %G en %F 10_4064_ap101_3_7
Krzysztof Jan Nowak. Quasianalytic perturbation of multi-parameter hyperbolic polynomials and symmetric matrices. Annales Polonici Mathematici, Tome 101 (2011) no. 3, pp. 275-291. doi: 10.4064/ap101-3-7
Cité par Sources :