Meromorphic solutions of $q$-shift difference equations
Annales Polonici Mathematici, Tome 101 (2011) no. 3, pp. 215-225.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish a $q$-shift difference analogue of the logarithmic derivative lemma. We also investigate the value distributions of $q$-shift difference polynomials and the growth of solutions of complex $q$-shift difference equations.
DOI : 10.4064/ap101-3-2
Keywords: establish q shift difference analogue logarithmic derivative lemma investigate value distributions q shift difference polynomials growth solutions complex q shift difference equations

Kai Liu 1 ; Xiao-Guang Qi 2

1 Department of Mathematics Nanchang University Nanchang, Jiangxi, 330031, P.R. China
2 School of Mathematics Shandong University Jinan, Shandong, 250100, P.R. China
@article{10_4064_ap101_3_2,
     author = {Kai Liu and Xiao-Guang Qi},
     title = {Meromorphic solutions of $q$-shift difference equations},
     journal = {Annales Polonici Mathematici},
     pages = {215--225},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2011},
     doi = {10.4064/ap101-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap101-3-2/}
}
TY  - JOUR
AU  - Kai Liu
AU  - Xiao-Guang Qi
TI  - Meromorphic solutions of $q$-shift difference equations
JO  - Annales Polonici Mathematici
PY  - 2011
SP  - 215
EP  - 225
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap101-3-2/
DO  - 10.4064/ap101-3-2
LA  - en
ID  - 10_4064_ap101_3_2
ER  - 
%0 Journal Article
%A Kai Liu
%A Xiao-Guang Qi
%T Meromorphic solutions of $q$-shift difference equations
%J Annales Polonici Mathematici
%D 2011
%P 215-225
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap101-3-2/
%R 10.4064/ap101-3-2
%G en
%F 10_4064_ap101_3_2
Kai Liu; Xiao-Guang Qi. Meromorphic solutions of $q$-shift difference equations. Annales Polonici Mathematici, Tome 101 (2011) no. 3, pp. 215-225. doi : 10.4064/ap101-3-2. http://geodesic.mathdoc.fr/articles/10.4064/ap101-3-2/

Cité par Sources :