On an integral-type operator from Privalov spaces to Bloch-type spaces
Annales Polonici Mathematici, Tome 101 (2011) no. 2, pp. 139-147
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H(B)$ denote the space of all holomorphic functions on the unit
ball $B$ of ${\mathbb C}^n$. Let $\varphi$ be a holomorphic self-map of $B$
and $g \in H(B)$ such that $g(0)=0$. We study the
integral-type operator
$$
C_\varphi^g f(z)= \int_0^1 \Re f(\varphi(tz)) g(tz)\,\frac{dt}{t},
\ \quad f \in H(B).
$$
The boundedness and compactness of
$C_\varphi^g$ from Privalov spaces to Bloch-type spaces and
little Bloch-type spaces are studied
Keywords:
denote space holomorphic functions unit ball mathbb varphi holomorphic self map study integral type operator varphi int varphi frac quad boundedness compactness varphi privalov spaces bloch type spaces little bloch type spaces studied
Affiliations des auteurs :
Xiangling Zhu 1
@article{10_4064_ap101_2_4,
author = {Xiangling Zhu},
title = {On an integral-type operator from {Privalov} spaces to {Bloch-type} spaces},
journal = {Annales Polonici Mathematici},
pages = {139--147},
publisher = {mathdoc},
volume = {101},
number = {2},
year = {2011},
doi = {10.4064/ap101-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap101-2-4/}
}
TY - JOUR AU - Xiangling Zhu TI - On an integral-type operator from Privalov spaces to Bloch-type spaces JO - Annales Polonici Mathematici PY - 2011 SP - 139 EP - 147 VL - 101 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap101-2-4/ DO - 10.4064/ap101-2-4 LA - en ID - 10_4064_ap101_2_4 ER -
Xiangling Zhu. On an integral-type operator from Privalov spaces to Bloch-type spaces. Annales Polonici Mathematici, Tome 101 (2011) no. 2, pp. 139-147. doi: 10.4064/ap101-2-4
Cité par Sources :