Pencils of irreducible rational curves and plane Jacobian conjecture
Annales Polonici Mathematici, Tome 101 (2011) no. 1, pp. 47-53
In certain cases the invertibility of a polynomial map $F=(P,Q):
\mathbb{C}^2\rightarrow \mathbb{C}^2$ can be characterized by
the irreducibility and the rationality of the curves $aP+bQ=0$,
$(a:b)\in \mathbb{P}^1$.
Keywords:
certain cases invertibility polynomial map mathbb rightarrow mathbb characterized irreducibility rationality curves mathbb
Affiliations des auteurs :
Nguyen Van Chau  1
@article{10_4064_ap101_1_5,
author = { Nguyen Van Chau},
title = {Pencils of irreducible rational curves and plane {Jacobian} conjecture},
journal = {Annales Polonici Mathematici},
pages = {47--53},
year = {2011},
volume = {101},
number = {1},
doi = {10.4064/ap101-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap101-1-5/}
}
Nguyen Van Chau. Pencils of irreducible rational curves and plane Jacobian conjecture. Annales Polonici Mathematici, Tome 101 (2011) no. 1, pp. 47-53. doi: 10.4064/ap101-1-5
Cité par Sources :