Doubly warped product submanifolds of $(\kappa ,\mu )$-contact metric manifolds
Annales Polonici Mathematici, Tome 100 (2011) no. 3, pp. 223-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish sharp inequalities for $C$-totally real doubly warped product submanifolds in ($\kappa ,\mu $)-contact space forms and in non-Sasakian ($\kappa ,\mu $)-contact metric manifolds.
DOI : 10.4064/ap100-3-2
Keywords: establish sharp inequalities c totally real doubly warped product submanifolds kappa contact space forms non sasakian kappa contact metric manifolds

Sibel Sular 1 ; Cihan Özgür 1

1 Department of Mathematics Balikesir University 10145, Çağış, Balikesir, Turkey
@article{10_4064_ap100_3_2,
     author = {Sibel Sular and Cihan \"Ozg\"ur},
     title = {Doubly warped product submanifolds of
 $(\kappa ,\mu )$-contact metric manifolds},
     journal = {Annales Polonici Mathematici},
     pages = {223--236},
     publisher = {mathdoc},
     volume = {100},
     number = {3},
     year = {2011},
     doi = {10.4064/ap100-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-3-2/}
}
TY  - JOUR
AU  - Sibel Sular
AU  - Cihan Özgür
TI  - Doubly warped product submanifolds of
 $(\kappa ,\mu )$-contact metric manifolds
JO  - Annales Polonici Mathematici
PY  - 2011
SP  - 223
EP  - 236
VL  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap100-3-2/
DO  - 10.4064/ap100-3-2
LA  - en
ID  - 10_4064_ap100_3_2
ER  - 
%0 Journal Article
%A Sibel Sular
%A Cihan Özgür
%T Doubly warped product submanifolds of
 $(\kappa ,\mu )$-contact metric manifolds
%J Annales Polonici Mathematici
%D 2011
%P 223-236
%V 100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap100-3-2/
%R 10.4064/ap100-3-2
%G en
%F 10_4064_ap100_3_2
Sibel Sular; Cihan Özgür. Doubly warped product submanifolds of
 $(\kappa ,\mu )$-contact metric manifolds. Annales Polonici Mathematici, Tome 100 (2011) no. 3, pp. 223-236. doi : 10.4064/ap100-3-2. http://geodesic.mathdoc.fr/articles/10.4064/ap100-3-2/

Cité par Sources :