On zeros of differences of meromorphic
functions
Annales Polonici Mathematici, Tome 100 (2011) no. 2, pp. 167-178
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f$ be a
transcendental meromorphic function and
$g(z)=f(z+c_1)+\cdots+f(z+c_k)-kf(z)$ and $g_k(z)=f(z+c_1)\cdots
f(z+c_k)-f^k(z)$. A number of results are obtained concerning the
exponents of convergence of the zeros of $g(z)$,
$g_k(z)$, ${g(z)}//{f(z)},$ and ${g_k(z)}//{f^k(z)}$.
Keywords:
transcendental meromorphic function cdots k kf cdots k f number results obtained concerning exponents convergence zeros
Affiliations des auteurs :
Yong Liu 1 ; HongXun Yi 1
@article{10_4064_ap100_2_6,
author = {Yong Liu and HongXun Yi},
title = {On zeros of differences of meromorphic
functions},
journal = {Annales Polonici Mathematici},
pages = {167--178},
publisher = {mathdoc},
volume = {100},
number = {2},
year = {2011},
doi = {10.4064/ap100-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-2-6/}
}
TY - JOUR AU - Yong Liu AU - HongXun Yi TI - On zeros of differences of meromorphic functions JO - Annales Polonici Mathematici PY - 2011 SP - 167 EP - 178 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap100-2-6/ DO - 10.4064/ap100-2-6 LA - en ID - 10_4064_ap100_2_6 ER -
Yong Liu; HongXun Yi. On zeros of differences of meromorphic functions. Annales Polonici Mathematici, Tome 100 (2011) no. 2, pp. 167-178. doi: 10.4064/ap100-2-6
Cité par Sources :