Let $f$ be a
transcendental meromorphic function and
$g(z)=f(z+c_1)+\cdots+f(z+c_k)-kf(z)$ and $g_k(z)=f(z+c_1)\cdots
f(z+c_k)-f^k(z)$. A number of results are obtained concerning the
exponents of convergence of the zeros of $g(z)$,
$g_k(z)$, ${g(z)}//{f(z)},$ and ${g_k(z)}//{f^k(z)}$.
@article{10_4064_ap100_2_6,
author = {Yong Liu and HongXun Yi},
title = {On zeros of differences of meromorphic
functions},
journal = {Annales Polonici Mathematici},
pages = {167--178},
year = {2011},
volume = {100},
number = {2},
doi = {10.4064/ap100-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-2-6/}
}
TY - JOUR
AU - Yong Liu
AU - HongXun Yi
TI - On zeros of differences of meromorphic
functions
JO - Annales Polonici Mathematici
PY - 2011
SP - 167
EP - 178
VL - 100
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap100-2-6/
DO - 10.4064/ap100-2-6
LA - en
ID - 10_4064_ap100_2_6
ER -
%0 Journal Article
%A Yong Liu
%A HongXun Yi
%T On zeros of differences of meromorphic
functions
%J Annales Polonici Mathematici
%D 2011
%P 167-178
%V 100
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/ap100-2-6/
%R 10.4064/ap100-2-6
%G en
%F 10_4064_ap100_2_6
Yong Liu; HongXun Yi. On zeros of differences of meromorphic
functions. Annales Polonici Mathematici, Tome 100 (2011) no. 2, pp. 167-178. doi: 10.4064/ap100-2-6