Kobayashi-Royden vs. Hahn pseudometric in ℂ²
Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 289-294
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a domain D ⊂ ℂ the Kobayashi-Royden ϰ and Hahn h pseudometrics are equal iff D is simply connected. Overholt showed that for $D ⊂ ℂ^n$, n ≥ 3, we have $h_D ≡ ϰ_D$. Let D₁, D₂ ⊂ ℂ. The aim of this paper is to show that $h_{D₁ × D₂}$ iff at least one of D₁, D₂ is simply connected or biholomorphic to ℂ \ {0}. In particular, there are domains D ⊂ ℂ² for which $h_D ≢ ϰ_D$.
Mots-clés :
Hahn pseudometric, Kobayashi pseudometric
Affiliations des auteurs :
Witold Jarnicki 1
@article{10_4064_ap_75_3_289_294,
author = {Witold Jarnicki},
title = {Kobayashi-Royden vs. {Hahn} pseudometric in {\ensuremath{\mathbb{C}}{\texttwosuperior}}},
journal = {Annales Polonici Mathematici},
pages = {289--294},
year = {2000},
volume = {75},
number = {3},
doi = {10.4064/ap-75-3-289-294},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-289-294/}
}
Witold Jarnicki. Kobayashi-Royden vs. Hahn pseudometric in ℂ². Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 289-294. doi: 10.4064/ap-75-3-289-294
Cité par Sources :