The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation
Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 281-287
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let L be a second order, linear, parabolic partial differential operator, with bounded Hölder continuous coefficients, defined on the closure of the strip $X = ℝ^{n} × ]0,a[$. We prove a representation theorem for an arbitrary $C^{2,1}$ function, in terms of the fundamental solution of the equation Lu=0. Such a theorem was proved in an earlier paper for a parabolic operator in divergence form with $C^{∞}$ coefficients, but here much weaker conditions suffice. Some consequences of the representation theorem, for the solutions of Lu=0, are also presented.
Keywords:
fundamental solution, parabolic equation, representation theorem
Affiliations des auteurs :
Neil Watson 1
@article{10_4064_ap_75_3_281_287,
author = {Neil Watson},
title = {The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation},
journal = {Annales Polonici Mathematici},
pages = {281--287},
year = {2000},
volume = {75},
number = {3},
doi = {10.4064/ap-75-3-281-287},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-281-287/}
}
TY - JOUR AU - Neil Watson TI - The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation JO - Annales Polonici Mathematici PY - 2000 SP - 281 EP - 287 VL - 75 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-281-287/ DO - 10.4064/ap-75-3-281-287 LA - en ID - 10_4064_ap_75_3_281_287 ER -
%0 Journal Article %A Neil Watson %T The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation %J Annales Polonici Mathematici %D 2000 %P 281-287 %V 75 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-281-287/ %R 10.4064/ap-75-3-281-287 %G en %F 10_4064_ap_75_3_281_287
Neil Watson. The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation. Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 281-287. doi: 10.4064/ap-75-3-281-287
Cité par Sources :