Multiple positive solutions to singular boundary value problems for superlinear second order FDEs
Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 257-270
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 t 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.
DOI : 10.4064/ap-75-3-257-270
Keywords: superlinear, fixed point theorem, singular boundary value problem, existence
@article{10_4064_ap_75_3_257_270,
     author = {Daqing Jiang},
     title = {Multiple positive solutions to singular boundary value problems for superlinear second order {FDEs}},
     journal = {Annales Polonici Mathematici},
     pages = {257--270},
     year = {2000},
     volume = {75},
     number = {3},
     doi = {10.4064/ap-75-3-257-270},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-257-270/}
}
TY  - JOUR
AU  - Daqing Jiang
TI  - Multiple positive solutions to singular boundary value problems for superlinear second order FDEs
JO  - Annales Polonici Mathematici
PY  - 2000
SP  - 257
EP  - 270
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-257-270/
DO  - 10.4064/ap-75-3-257-270
LA  - en
ID  - 10_4064_ap_75_3_257_270
ER  - 
%0 Journal Article
%A Daqing Jiang
%T Multiple positive solutions to singular boundary value problems for superlinear second order FDEs
%J Annales Polonici Mathematici
%D 2000
%P 257-270
%V 75
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-257-270/
%R 10.4064/ap-75-3-257-270
%G en
%F 10_4064_ap_75_3_257_270
Daqing Jiang. Multiple positive solutions to singular boundary value problems for superlinear second order FDEs. Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 257-270. doi: 10.4064/ap-75-3-257-270

Cité par Sources :