Noethérianité de certaines algèbres de fonctions analytiques et applications
Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 247-256.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M ⊂ ℝ^{n}$ be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider $S_{K}={f ∈ H(M)| f(x) ≠ 0 for all x ∈ K}$; $S_{K}$ is a multiplicative subset of $H(M)$. Let $S_{K}^{-1}H(M)$ be the localization of H(M) with respect to $S_{K}$. In this paper we prove, first, that $S_{K}^{-1}H(M)$ is a regular ring (hence noetherian) and use this result in two situations:    1) For each open subset $Ω ⊂ ℝ^{n}$, we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, $f_{x}$, is algebraic on $H(ℝ^{n})$. We prove that if Ω is a bounded subanalytic subset, then O(Ω) is a regular ring (hence noetherian).    2) Let $M ⊂ ℝ^{n}$ be a Nash submanifold and N(M) the ring of Nash functions on M; we have an injection N(M) → H(M). In [2] it was proved that every prime ideal p of N(M) generates a prime ideal of analytic functions pH(M) if M or V(p) is compact. We use our Theorem 1 to give another proof in the situation where V(p) is compact. Finally we show that this result holds in some particular situation where M and V(p) are not assumed to be compact.
DOI : 10.4064/ap-75-3-247-256
Mots-clés : Nash functions, regular rings, analytic algebra, subanalytic sets

Abdelhafed Elkhadiri 1 ; Mouttaki Hlal 1

1
@article{10_4064_ap_75_3_247_256,
     author = {Abdelhafed Elkhadiri and Mouttaki Hlal},
     title = {Noeth\'erianit\'e de certaines alg\`ebres de fonctions analytiques et applications},
     journal = {Annales Polonici Mathematici},
     pages = {247--256},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2000},
     doi = {10.4064/ap-75-3-247-256},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-247-256/}
}
TY  - JOUR
AU  - Abdelhafed Elkhadiri
AU  - Mouttaki Hlal
TI  - Noethérianité de certaines algèbres de fonctions analytiques et applications
JO  - Annales Polonici Mathematici
PY  - 2000
SP  - 247
EP  - 256
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-247-256/
DO  - 10.4064/ap-75-3-247-256
LA  - fr
ID  - 10_4064_ap_75_3_247_256
ER  - 
%0 Journal Article
%A Abdelhafed Elkhadiri
%A Mouttaki Hlal
%T Noethérianité de certaines algèbres de fonctions analytiques et applications
%J Annales Polonici Mathematici
%D 2000
%P 247-256
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-247-256/
%R 10.4064/ap-75-3-247-256
%G fr
%F 10_4064_ap_75_3_247_256
Abdelhafed Elkhadiri; Mouttaki Hlal. Noethérianité de certaines algèbres de fonctions analytiques et applications. Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 247-256. doi : 10.4064/ap-75-3-247-256. http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-247-256/

Cité par Sources :