Noethérianité de certaines algèbres de fonctions analytiques et applications
Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 247-256
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $M ⊂ ℝ^{n}$ be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider $S_{K}={f ∈ H(M)| f(x) ≠ 0 for all x ∈ K}$; $S_{K}$ is a multiplicative subset of $H(M)$. Let $S_{K}^{-1}H(M)$ be the localization of H(M) with respect to $S_{K}$. In this paper we prove, first, that $S_{K}^{-1}H(M)$ is a regular ring (hence noetherian) and use this result in two situations: 1) For each open subset $Ω ⊂ ℝ^{n}$, we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, $f_{x}$, is algebraic on $H(ℝ^{n})$. We prove that if Ω is a bounded subanalytic subset, then O(Ω) is a regular ring (hence noetherian). 2) Let $M ⊂ ℝ^{n}$ be a Nash submanifold and N(M) the ring of Nash functions on M; we have an injection N(M) → H(M). In [2] it was proved that every prime ideal p of N(M) generates a prime ideal of analytic functions pH(M) if M or V(p) is compact. We use our Theorem 1 to give another proof in the situation where V(p) is compact. Finally we show that this result holds in some particular situation where M and V(p) are not assumed to be compact.
Mots-clés :
Nash functions, regular rings, analytic algebra, subanalytic sets
Affiliations des auteurs :
Abdelhafed Elkhadiri 1 ; Mouttaki Hlal 1
@article{10_4064_ap_75_3_247_256,
author = {Abdelhafed Elkhadiri and Mouttaki Hlal},
title = {Noeth\'erianit\'e de certaines alg\`ebres de fonctions analytiques et applications},
journal = {Annales Polonici Mathematici},
pages = {247--256},
year = {2000},
volume = {75},
number = {3},
doi = {10.4064/ap-75-3-247-256},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-247-256/}
}
TY - JOUR AU - Abdelhafed Elkhadiri AU - Mouttaki Hlal TI - Noethérianité de certaines algèbres de fonctions analytiques et applications JO - Annales Polonici Mathematici PY - 2000 SP - 247 EP - 256 VL - 75 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-247-256/ DO - 10.4064/ap-75-3-247-256 LA - fr ID - 10_4064_ap_75_3_247_256 ER -
%0 Journal Article %A Abdelhafed Elkhadiri %A Mouttaki Hlal %T Noethérianité de certaines algèbres de fonctions analytiques et applications %J Annales Polonici Mathematici %D 2000 %P 247-256 %V 75 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-247-256/ %R 10.4064/ap-75-3-247-256 %G fr %F 10_4064_ap_75_3_247_256
Abdelhafed Elkhadiri; Mouttaki Hlal. Noethérianité de certaines algèbres de fonctions analytiques et applications. Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 247-256. doi: 10.4064/ap-75-3-247-256
Cité par Sources :