Finite extensions of mappings from a smooth variety
Annales Polonici Mathematici, Tome 75 (2000) no. 1, pp. 79-86
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let V, W be algebraic subsets of $k^n$, $k^m$ respectively, with n ≤ m. It is known that any finite polynomial mapping f: V → W can be extended to a finite polynomial mapping $F: k^{n} → k^{m}.$ The main goal of this paper is to estimate from above the geometric degree of a finite extension $F: k^n → k^n$ of a dominating mapping f: V → W, where V and W are smooth algebraic sets.
Keywords:
finite extension, geometric degree, finite mapping
Affiliations des auteurs :
Marek Karaś 1
@article{10_4064_ap_75_1_79_86,
author = {Marek Kara\'s},
title = {Finite extensions of mappings from a smooth variety},
journal = {Annales Polonici Mathematici},
pages = {79--86},
year = {2000},
volume = {75},
number = {1},
doi = {10.4064/ap-75-1-79-86},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-79-86/}
}
Marek Karaś. Finite extensions of mappings from a smooth variety. Annales Polonici Mathematici, Tome 75 (2000) no. 1, pp. 79-86. doi: 10.4064/ap-75-1-79-86
Cité par Sources :