Finite extensions of mappings from a smooth variety
Annales Polonici Mathematici, Tome 75 (2000) no. 1, pp. 79-86.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let V, W be algebraic subsets of $k^n$, $k^m$ respectively, with n ≤ m. It is known that any finite polynomial mapping f: V → W can be extended to a finite polynomial mapping $F: k^{n} → k^{m}.$ The main goal of this paper is to estimate from above the geometric degree of a finite extension $F: k^n → k^n$ of a dominating mapping f: V → W, where V and W are smooth algebraic sets.
DOI : 10.4064/ap-75-1-79-86
Keywords: finite extension, geometric degree, finite mapping

Marek Karaś 1

1
@article{10_4064_ap_75_1_79_86,
     author = {Marek Kara\'s},
     title = {Finite extensions of mappings from a smooth variety},
     journal = {Annales Polonici Mathematici},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2000},
     doi = {10.4064/ap-75-1-79-86},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-79-86/}
}
TY  - JOUR
AU  - Marek Karaś
TI  - Finite extensions of mappings from a smooth variety
JO  - Annales Polonici Mathematici
PY  - 2000
SP  - 79
EP  - 86
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-79-86/
DO  - 10.4064/ap-75-1-79-86
LA  - en
ID  - 10_4064_ap_75_1_79_86
ER  - 
%0 Journal Article
%A Marek Karaś
%T Finite extensions of mappings from a smooth variety
%J Annales Polonici Mathematici
%D 2000
%P 79-86
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-79-86/
%R 10.4064/ap-75-1-79-86
%G en
%F 10_4064_ap_75_1_79_86
Marek Karaś. Finite extensions of mappings from a smooth variety. Annales Polonici Mathematici, Tome 75 (2000) no. 1, pp. 79-86. doi : 10.4064/ap-75-1-79-86. http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-79-86/

Cité par Sources :