On the Kuramoto-Sivashinsky equation in a disk
Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 227-256
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the first initial-boundary value problem for the 2-D Kuramoto-Sivashinsky equation in a unit disk with homogeneous boundary conditions, periodicity conditions in the angle, and small initial data. Apart from proving the existence and uniqueness of a global in time solution, we construct it in the form of a series in a small parameter present in the initial conditions. In the stable case we also obtain the uniform in space long-time asymptotic expansion of the constructed solution and its asymptotics with respect to the nonlinearity constant. The method can work for other dissipative parabolic equations with dispersion.
Keywords:
first initial-boundary value problem, long-time asymptotics, Kuramoto-Sivashinsky equation, disk
Affiliations des auteurs :
Vladimir Varlamov 1
@article{10_4064_ap_73_3_227_256,
author = {Vladimir Varlamov},
title = {On the {Kuramoto-Sivashinsky} equation in a disk},
journal = {Annales Polonici Mathematici},
pages = {227--256},
publisher = {mathdoc},
volume = {73},
number = {3},
year = {2000},
doi = {10.4064/ap-73-3-227-256},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-227-256/}
}
TY - JOUR AU - Vladimir Varlamov TI - On the Kuramoto-Sivashinsky equation in a disk JO - Annales Polonici Mathematici PY - 2000 SP - 227 EP - 256 VL - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-227-256/ DO - 10.4064/ap-73-3-227-256 LA - en ID - 10_4064_ap_73_3_227_256 ER -
Vladimir Varlamov. On the Kuramoto-Sivashinsky equation in a disk. Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 227-256. doi: 10.4064/ap-73-3-227-256
Cité par Sources :