Hodge numbers of a double octic with non-isolated singularities
Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 221-226.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If B is a surface in ℙ³ of degree 8 which is the union of two smooth surfaces intersecting transversally then the double covering of ℙ³ branched along B has a non-singular model which is a Calabi-Yau manifold. The aim of this note is to compute the Hodge numbers of this manifold.
DOI : 10.4064/ap-73-3-221-226
Keywords: Hodge numbers, double solids, Calabi-Yau manifolds, surface singularities

Sławomir Cynk 1

1
@article{10_4064_ap_73_3_221_226,
     author = {S{\l}awomir Cynk},
     title = {Hodge numbers of a double octic with non-isolated singularities},
     journal = {Annales Polonici Mathematici},
     pages = {221--226},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2000},
     doi = {10.4064/ap-73-3-221-226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-221-226/}
}
TY  - JOUR
AU  - Sławomir Cynk
TI  - Hodge numbers of a double octic with non-isolated singularities
JO  - Annales Polonici Mathematici
PY  - 2000
SP  - 221
EP  - 226
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-221-226/
DO  - 10.4064/ap-73-3-221-226
LA  - en
ID  - 10_4064_ap_73_3_221_226
ER  - 
%0 Journal Article
%A Sławomir Cynk
%T Hodge numbers of a double octic with non-isolated singularities
%J Annales Polonici Mathematici
%D 2000
%P 221-226
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-221-226/
%R 10.4064/ap-73-3-221-226
%G en
%F 10_4064_ap_73_3_221_226
Sławomir Cynk. Hodge numbers of a double octic with non-isolated singularities. Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 221-226. doi : 10.4064/ap-73-3-221-226. http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-221-226/

Cité par Sources :