Pointwise approximation by Meyer-König and Zeller operators
Annales Polonici Mathematici, Tome 73 (2000) no. 2, pp. 185-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the rate of pointwise convergence of Meyer-König and Zeller operators for bounded functions, and get an asymptotically optimal estimate.
DOI : 10.4064/ap-73-2-185-196
Keywords: asymptotically optimal, rate of convergence, basis functions and moments of approximation operators

Xiao-Ming Zeng 1 ; Jun-Ning Zhao 1

1
@article{10_4064_ap_73_2_185_196,
     author = {Xiao-Ming Zeng and Jun-Ning Zhao},
     title = {Pointwise approximation by {Meyer-K\"onig} and {Zeller} operators},
     journal = {Annales Polonici Mathematici},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2000},
     doi = {10.4064/ap-73-2-185-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-185-196/}
}
TY  - JOUR
AU  - Xiao-Ming Zeng
AU  - Jun-Ning Zhao
TI  - Pointwise approximation by Meyer-König and Zeller operators
JO  - Annales Polonici Mathematici
PY  - 2000
SP  - 185
EP  - 196
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-185-196/
DO  - 10.4064/ap-73-2-185-196
LA  - en
ID  - 10_4064_ap_73_2_185_196
ER  - 
%0 Journal Article
%A Xiao-Ming Zeng
%A Jun-Ning Zhao
%T Pointwise approximation by Meyer-König and Zeller operators
%J Annales Polonici Mathematici
%D 2000
%P 185-196
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-185-196/
%R 10.4064/ap-73-2-185-196
%G en
%F 10_4064_ap_73_2_185_196
Xiao-Ming Zeng; Jun-Ning Zhao. Pointwise approximation by Meyer-König and Zeller operators. Annales Polonici Mathematici, Tome 73 (2000) no. 2, pp. 185-196. doi : 10.4064/ap-73-2-185-196. http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-185-196/

Cité par Sources :