Two-dimensional real symmetric spaces with maximal projection constant
Annales Polonici Mathematici, Tome 73 (2000) no. 2, pp. 119-134.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let V be a two-dimensional real symmetric space with unit ball having 8n extreme points. Let λ(V) denote the absolute projection constant of V. We show that $λ(V) ≤ λ(V_n)$ where $V_n$ is the space whose ball is a regular 8n-polygon. Also we reprove a result of [1] and [5] which states that $4/π = λ(l₂^{(2)}) ≥ λ(V)$ for any two-dimensional real symmetric space V.
DOI : 10.4064/ap-73-2-119-134
Keywords: absolute projection constant, minimal projection, symmetric spaces

Bruce Chalmers 1 ; Grzegorz Lewicki 1

1
@article{10_4064_ap_73_2_119_134,
     author = {Bruce Chalmers and Grzegorz Lewicki},
     title = {Two-dimensional real symmetric spaces with maximal projection constant},
     journal = {Annales Polonici Mathematici},
     pages = {119--134},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2000},
     doi = {10.4064/ap-73-2-119-134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-119-134/}
}
TY  - JOUR
AU  - Bruce Chalmers
AU  - Grzegorz Lewicki
TI  - Two-dimensional real symmetric spaces with maximal projection constant
JO  - Annales Polonici Mathematici
PY  - 2000
SP  - 119
EP  - 134
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-119-134/
DO  - 10.4064/ap-73-2-119-134
LA  - en
ID  - 10_4064_ap_73_2_119_134
ER  - 
%0 Journal Article
%A Bruce Chalmers
%A Grzegorz Lewicki
%T Two-dimensional real symmetric spaces with maximal projection constant
%J Annales Polonici Mathematici
%D 2000
%P 119-134
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-119-134/
%R 10.4064/ap-73-2-119-134
%G en
%F 10_4064_ap_73_2_119_134
Bruce Chalmers; Grzegorz Lewicki. Two-dimensional real symmetric spaces with maximal projection constant. Annales Polonici Mathematici, Tome 73 (2000) no. 2, pp. 119-134. doi : 10.4064/ap-73-2-119-134. http://geodesic.mathdoc.fr/articles/10.4064/ap-73-2-119-134/

Cité par Sources :