On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments
Annales Polonici Mathematici, Tome 72 (1999) no. 2, pp. 181-190.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an existence theorem of Cauchy-Kovalevskaya type for the equation $D_t u(t,z) = f(t,z,u(α^{(0)}(t,z)), D_z u(α^{(1)}(t,z)),...,D_z^k u(α^{(k)}(t,z)))$ where f is a polynomial with respect to the last k variables.
DOI : 10.4064/ap-72-2-181-190
Keywords: nonlinear equation, deviating argument, analytic solution, Cauchy-Kovalevskaya theorem

Antoni Augustynowicz 1

1
@article{10_4064_ap_72_2_181_190,
     author = {Antoni Augustynowicz},
     title = {On a theorem of {Cauchy-Kovalevskaya} type for a class of nonlinear {PDE's} of higher order with deviating arguments},
     journal = {Annales Polonici Mathematici},
     pages = {181--190},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1999},
     doi = {10.4064/ap-72-2-181-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-72-2-181-190/}
}
TY  - JOUR
AU  - Antoni Augustynowicz
TI  - On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 181
EP  - 190
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-72-2-181-190/
DO  - 10.4064/ap-72-2-181-190
LA  - en
ID  - 10_4064_ap_72_2_181_190
ER  - 
%0 Journal Article
%A Antoni Augustynowicz
%T On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments
%J Annales Polonici Mathematici
%D 1999
%P 181-190
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-72-2-181-190/
%R 10.4064/ap-72-2-181-190
%G en
%F 10_4064_ap_72_2_181_190
Antoni Augustynowicz. On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments. Annales Polonici Mathematici, Tome 72 (1999) no. 2, pp. 181-190. doi : 10.4064/ap-72-2-181-190. http://geodesic.mathdoc.fr/articles/10.4064/ap-72-2-181-190/

Cité par Sources :