On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments
Annales Polonici Mathematici, Tome 72 (1999) no. 2, pp. 181-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove an existence theorem of Cauchy-Kovalevskaya type for the equation $D_t u(t,z) = f(t,z,u(α^{(0)}(t,z)), D_z u(α^{(1)}(t,z)),...,D_z^k u(α^{(k)}(t,z)))$ where f is a polynomial with respect to the last k variables.
Keywords:
nonlinear equation, deviating argument, analytic solution, Cauchy-Kovalevskaya theorem
Affiliations des auteurs :
Antoni Augustynowicz 1
@article{10_4064_ap_72_2_181_190,
author = {Antoni Augustynowicz},
title = {On a theorem of {Cauchy-Kovalevskaya} type for a class of nonlinear {PDE's} of higher order with deviating arguments},
journal = {Annales Polonici Mathematici},
pages = {181--190},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1999},
doi = {10.4064/ap-72-2-181-190},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-72-2-181-190/}
}
TY - JOUR AU - Antoni Augustynowicz TI - On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments JO - Annales Polonici Mathematici PY - 1999 SP - 181 EP - 190 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-72-2-181-190/ DO - 10.4064/ap-72-2-181-190 LA - en ID - 10_4064_ap_72_2_181_190 ER -
%0 Journal Article %A Antoni Augustynowicz %T On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments %J Annales Polonici Mathematici %D 1999 %P 181-190 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-72-2-181-190/ %R 10.4064/ap-72-2-181-190 %G en %F 10_4064_ap_72_2_181_190
Antoni Augustynowicz. On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments. Annales Polonici Mathematici, Tome 72 (1999) no. 2, pp. 181-190. doi: 10.4064/ap-72-2-181-190
Cité par Sources :