On the mixed problem for quasilinear partial functional differential equations with unbounded delay
Annales Polonici Mathematici, Tome 72 (1999) no. 1, pp. 87-98
We consider the mixed problem for the quasilinear partial functional differential equation with unbounded delay $D_tz(t,x) = ∑_{i=1}^n f_i(t,x,z_{(t,x)})D_{x_i}z(t,x) + h(t,x,z_{(t,x)})$, where $z_{(t,x)} ∈ X̶_0$ is defined by $z_{(t,x)}(τ,s) = z(t+τ,x+s)$, $(τ,s) ∈ (-∞,0]×[0,r]$, and the phase space $X̶_0$ satisfies suitable axioms. Using the method of bicharacteristics and the fixed-point method we prove a theorem on the local existence and uniqueness of Carathéodory solutions of the mixed problem.
Keywords:
Carathéodory solutions, functional differential equation, bicharacteristics, fixed-point theorem, mixed problem, unbounded delay
@article{10_4064_ap_72_1_87_98,
author = {Tomasz Cz{\l}api\'nski},
title = {On the mixed problem for quasilinear partial functional differential equations with unbounded delay},
journal = {Annales Polonici Mathematici},
pages = {87--98},
year = {1999},
volume = {72},
number = {1},
doi = {10.4064/ap-72-1-87-98},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-72-1-87-98/}
}
TY - JOUR AU - Tomasz Człapiński TI - On the mixed problem for quasilinear partial functional differential equations with unbounded delay JO - Annales Polonici Mathematici PY - 1999 SP - 87 EP - 98 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-72-1-87-98/ DO - 10.4064/ap-72-1-87-98 LA - en ID - 10_4064_ap_72_1_87_98 ER -
%0 Journal Article %A Tomasz Człapiński %T On the mixed problem for quasilinear partial functional differential equations with unbounded delay %J Annales Polonici Mathematici %D 1999 %P 87-98 %V 72 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-72-1-87-98/ %R 10.4064/ap-72-1-87-98 %G en %F 10_4064_ap_72_1_87_98
Tomasz Człapiński. On the mixed problem for quasilinear partial functional differential equations with unbounded delay. Annales Polonici Mathematici, Tome 72 (1999) no. 1, pp. 87-98. doi: 10.4064/ap-72-1-87-98
Cité par Sources :