Non-zero constant Jacobian polynomial maps of $ℂ²$
Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 287-310
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.
Mots-clés :
Jacobian conjecture, polynomial automorphism, Newton-Puiseux expansion
Affiliations des auteurs :
Nguyen Chau 1
@article{10_4064_ap_71_3_287_310,
author = {Nguyen Chau},
title = {Non-zero constant {Jacobian} polynomial maps of $\ensuremath{\mathbb{C}}{\texttwosuperior}$},
journal = {Annales Polonici Mathematici},
pages = {287--310},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {1999},
doi = {10.4064/ap-71-3-287-310},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-287-310/}
}
TY - JOUR AU - Nguyen Chau TI - Non-zero constant Jacobian polynomial maps of $ℂ²$ JO - Annales Polonici Mathematici PY - 1999 SP - 287 EP - 310 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-287-310/ DO - 10.4064/ap-71-3-287-310 LA - fr ID - 10_4064_ap_71_3_287_310 ER -
Nguyen Chau. Non-zero constant Jacobian polynomial maps of $ℂ²$. Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 287-310. doi: 10.4064/ap-71-3-287-310
Cité par Sources :