Non-zero constant Jacobian polynomial maps of $ℂ²$
Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 287-310.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.
DOI : 10.4064/ap-71-3-287-310
Mots-clés : Jacobian conjecture, polynomial automorphism, Newton-Puiseux expansion

Nguyen Chau 1

1
@article{10_4064_ap_71_3_287_310,
     author = {Nguyen Chau},
     title = {Non-zero constant {Jacobian} polynomial maps of $\ensuremath{\mathbb{C}}{\texttwosuperior}$},
     journal = {Annales Polonici Mathematici},
     pages = {287--310},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {1999},
     doi = {10.4064/ap-71-3-287-310},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-287-310/}
}
TY  - JOUR
AU  - Nguyen Chau
TI  - Non-zero constant Jacobian polynomial maps of $ℂ²$
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 287
EP  - 310
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-287-310/
DO  - 10.4064/ap-71-3-287-310
LA  - fr
ID  - 10_4064_ap_71_3_287_310
ER  - 
%0 Journal Article
%A Nguyen Chau
%T Non-zero constant Jacobian polynomial maps of $ℂ²$
%J Annales Polonici Mathematici
%D 1999
%P 287-310
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-287-310/
%R 10.4064/ap-71-3-287-310
%G fr
%F 10_4064_ap_71_3_287_310
Nguyen Chau. Non-zero constant Jacobian polynomial maps of $ℂ²$. Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 287-310. doi : 10.4064/ap-71-3-287-310. http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-287-310/

Cité par Sources :