Hyperbolically convex functions II
Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 273-285.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Unlike those for euclidean convex functions, the known characterizations for hyperbolically convex functions usually contain terms that are not holomorphic. This makes hyperbolically convex functions much harder to investigate. We give a geometric proof of a two-variable characterization obtained by Mejia and Pommerenke. This characterization involves a function of two variables which is holomorphic in one of the two variables. Various applications of the two-variable characterization result in a number of analogies with the classical theory of euclidean convex functions. In particular, we obtain a uniform upper bound on the Schwarzian derivative. We also obtain the sharp lower bound on |f'(z)| for all z in the unit disk, and the sharp upper bound on |f'(z)| when |z| ≤ √2 - 1.
DOI : 10.4064/ap-71-3-273-285
Keywords: hyperbolic convexity, two-variable characterization, Schwarzian derivative, distortion theorem

William Ma 1 ; David Minda 1

1
@article{10_4064_ap_71_3_273_285,
     author = {William Ma and David Minda},
     title = {Hyperbolically convex functions {II}},
     journal = {Annales Polonici Mathematici},
     pages = {273--285},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {1999},
     doi = {10.4064/ap-71-3-273-285},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-273-285/}
}
TY  - JOUR
AU  - William Ma
AU  - David Minda
TI  - Hyperbolically convex functions II
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 273
EP  - 285
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-273-285/
DO  - 10.4064/ap-71-3-273-285
LA  - en
ID  - 10_4064_ap_71_3_273_285
ER  - 
%0 Journal Article
%A William Ma
%A David Minda
%T Hyperbolically convex functions II
%J Annales Polonici Mathematici
%D 1999
%P 273-285
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-273-285/
%R 10.4064/ap-71-3-273-285
%G en
%F 10_4064_ap_71_3_273_285
William Ma; David Minda. Hyperbolically convex functions II. Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 273-285. doi : 10.4064/ap-71-3-273-285. http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-273-285/

Cité par Sources :