Completeness of the Bergman metric on non-smooth pseudoconvex domains
Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 241-251
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in $ℂ^n$ are Bergman comlete.
@article{10_4064_ap_71_3_241_251,
author = {Bo Chen},
title = {Completeness of the {Bergman} metric on non-smooth pseudoconvex domains},
journal = {Annales Polonici Mathematici},
pages = {241--251},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {1999},
doi = {10.4064/ap-71-3-241-251},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-241-251/}
}
TY - JOUR AU - Bo Chen TI - Completeness of the Bergman metric on non-smooth pseudoconvex domains JO - Annales Polonici Mathematici PY - 1999 SP - 241 EP - 251 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-241-251/ DO - 10.4064/ap-71-3-241-251 LA - en ID - 10_4064_ap_71_3_241_251 ER -
Bo Chen. Completeness of the Bergman metric on non-smooth pseudoconvex domains. Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 241-251. doi: 10.4064/ap-71-3-241-251
Cité par Sources :