On the Łojasiewicz exponent of the gradient of a polynomial function
Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 211-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $h = ∑ h_{αβ} X^αY^β$ be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that $|grad h(x,y)| ≥ c|(x,y)|^λ$ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.
DOI : 10.4064/ap-71-3-211-239
Keywords: polynomial mapping, Łojasiewicz exponent, Newton diagram

Andrzej Lenarcik 1

1
@article{10_4064_ap_71_3_211_239,
     author = {Andrzej Lenarcik},
     title = {On the {{\L}ojasiewicz} exponent of the gradient of a polynomial function},
     journal = {Annales Polonici Mathematici},
     pages = {211--239},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {1999},
     doi = {10.4064/ap-71-3-211-239},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-211-239/}
}
TY  - JOUR
AU  - Andrzej Lenarcik
TI  - On the Łojasiewicz exponent of the gradient of a polynomial function
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 211
EP  - 239
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-211-239/
DO  - 10.4064/ap-71-3-211-239
LA  - en
ID  - 10_4064_ap_71_3_211_239
ER  - 
%0 Journal Article
%A Andrzej Lenarcik
%T On the Łojasiewicz exponent of the gradient of a polynomial function
%J Annales Polonici Mathematici
%D 1999
%P 211-239
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-211-239/
%R 10.4064/ap-71-3-211-239
%G en
%F 10_4064_ap_71_3_211_239
Andrzej Lenarcik. On the Łojasiewicz exponent of the gradient of a polynomial function. Annales Polonici Mathematici, Tome 71 (1999) no. 3, pp. 211-239. doi : 10.4064/ap-71-3-211-239. http://geodesic.mathdoc.fr/articles/10.4064/ap-71-3-211-239/

Cité par Sources :