Properties of the Sobolev space $H_k^{s,s'}$
Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 199-209
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let n ≥ 2 and $H_k^{s,s'} = {u∈ S'(ℝ^n): ∥u∥_{s,s'} ∞}$, where $∥u∥²_{s,s'} = (2π)^{-n} ∫(1+|ξ|²)^s (1+|ξ'|²)^{s'}|Fu(ξ)|²dξ $, $Fu(ξ) = ∫e^{-ixξ} u(x) dx$, $ξ'∈ ℝ^k$, k n. We prove that for some s,s' the space $H^{s,s'}_k$ is a multiplicative algebra.
Keywords:
multiplicative algebra, Littlewood double decomposition
Affiliations des auteurs :
Henryk Kołakowski 1
@article{10_4064_ap_71_2_199_209,
author = {Henryk Ko{\l}akowski},
title = {Properties of the {Sobolev} space $H_k^{s,s'}$},
journal = {Annales Polonici Mathematici},
pages = {199--209},
year = {1999},
volume = {71},
number = {2},
doi = {10.4064/ap-71-2-199-209},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-199-209/}
}
Henryk Kołakowski. Properties of the Sobolev space $H_k^{s,s'}$. Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 199-209. doi: 10.4064/ap-71-2-199-209
Cité par Sources :