Difference methods for the Darboux problem for functional partial differential equations
Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 171-193.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the following Darboux problem: (1) $D_{xy}z(x,y) = f(x,y,z_{(x,y)},(D_xz)_{(x,y)},(D_yz)_{(x,y)})$, (2) z(x,y) = ϕ(x,y) on [-a₀,a] × [-b₀,b] \ (0,a] × (0,b], where $a₀,b₀ ∈ ℝ₊, a,b > 0. The operator $[0,a] × [0,b] ∋ (x,y) ↦ ω_{(x,y)} ∈ C([-a₀,0] × [-b₀,0],ℝ)$ defined by $ω_{(x,y)}(t,s) = ω(t+x,s+y)$ represents the functional dependence on the unknown function and its derivatives. We construct a wide class of difference methods for problem (1),(2). We prove the existence of solutions of implicit functional systems by means of a comparative method. We get two convergence theorems for implicit and explicit schemes, in the latter case with a nonlinear estimate with respect to the third variable. We give numerical examples to illustrate these results.
DOI : 10.4064/ap-71-2-171-193
Keywords: functional differential equation, Darboux problem, classical

Tomasz Człapiński 1

1
@article{10_4064_ap_71_2_171_193,
     author = {Tomasz Cz{\l}api\'nski},
     title = {Difference methods for the {Darboux} problem for functional partial differential equations},
     journal = {Annales Polonici Mathematici},
     pages = {171--193},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1999},
     doi = {10.4064/ap-71-2-171-193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-171-193/}
}
TY  - JOUR
AU  - Tomasz Człapiński
TI  - Difference methods for the Darboux problem for functional partial differential equations
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 171
EP  - 193
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-171-193/
DO  - 10.4064/ap-71-2-171-193
LA  - en
ID  - 10_4064_ap_71_2_171_193
ER  - 
%0 Journal Article
%A Tomasz Człapiński
%T Difference methods for the Darboux problem for functional partial differential equations
%J Annales Polonici Mathematici
%D 1999
%P 171-193
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-171-193/
%R 10.4064/ap-71-2-171-193
%G en
%F 10_4064_ap_71_2_171_193
Tomasz Człapiński. Difference methods for the Darboux problem for functional partial differential equations. Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 171-193. doi : 10.4064/ap-71-2-171-193. http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-171-193/

Cité par Sources :