Difference methods for the Darboux problem for functional partial differential equations
Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 171-193
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the following Darboux problem: (1) $D_{xy}z(x,y) = f(x,y,z_{(x,y)},(D_xz)_{(x,y)},(D_yz)_{(x,y)})$, (2) z(x,y) = ϕ(x,y) on [-a₀,a] × [-b₀,b] \ (0,a] × (0,b], where $a₀,b₀ ∈ ℝ₊, a,b > 0. The operator $[0,a] × [0,b] ∋ (x,y) ↦ ω_{(x,y)} ∈ C([-a₀,0] × [-b₀,0],ℝ)$ defined by $ω_{(x,y)}(t,s) = ω(t+x,s+y)$ represents the functional dependence on the unknown function and its derivatives. We construct a wide class of difference methods for problem (1),(2). We prove the existence of solutions of implicit functional systems by means of a comparative method. We get two convergence theorems for implicit and explicit schemes, in the latter case with a nonlinear estimate with respect to the third variable. We give numerical examples to illustrate these results.
Keywords:
functional differential equation, Darboux problem, classical
Affiliations des auteurs :
Tomasz Człapiński 1
@article{10_4064_ap_71_2_171_193,
author = {Tomasz Cz{\l}api\'nski},
title = {Difference methods for the {Darboux} problem for functional partial differential equations},
journal = {Annales Polonici Mathematici},
pages = {171--193},
year = {1999},
volume = {71},
number = {2},
doi = {10.4064/ap-71-2-171-193},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-171-193/}
}
TY - JOUR AU - Tomasz Człapiński TI - Difference methods for the Darboux problem for functional partial differential equations JO - Annales Polonici Mathematici PY - 1999 SP - 171 EP - 193 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-171-193/ DO - 10.4064/ap-71-2-171-193 LA - en ID - 10_4064_ap_71_2_171_193 ER -
%0 Journal Article %A Tomasz Człapiński %T Difference methods for the Darboux problem for functional partial differential equations %J Annales Polonici Mathematici %D 1999 %P 171-193 %V 71 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-171-193/ %R 10.4064/ap-71-2-171-193 %G en %F 10_4064_ap_71_2_171_193
Tomasz Człapiński. Difference methods for the Darboux problem for functional partial differential equations. Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 171-193. doi: 10.4064/ap-71-2-171-193
Cité par Sources :