On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2
Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 151-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.
DOI : 10.4064/ap-71-2-151-160
Keywords: harmonic functions, harmonic polynomials, spherical harmonics, conjugate harmonic functions

Ewa Ligocka 1

1
@article{10_4064_ap_71_2_151_160,
     author = {Ewa Ligocka},
     title = {On the {Hartogs-type} series for harmonic functions on {Hartogs} domains in $\ensuremath{\mathbb{R}}^n {\texttimes} \ensuremath{\mathbb{R}}^m$, m \ensuremath{\geq} 2},
     journal = {Annales Polonici Mathematici},
     pages = {151--160},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1999},
     doi = {10.4064/ap-71-2-151-160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-151-160/}
}
TY  - JOUR
AU  - Ewa Ligocka
TI  - On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 151
EP  - 160
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-151-160/
DO  - 10.4064/ap-71-2-151-160
LA  - en
ID  - 10_4064_ap_71_2_151_160
ER  - 
%0 Journal Article
%A Ewa Ligocka
%T On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2
%J Annales Polonici Mathematici
%D 1999
%P 151-160
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-151-160/
%R 10.4064/ap-71-2-151-160
%G en
%F 10_4064_ap_71_2_151_160
Ewa Ligocka. On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2. Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 151-160. doi : 10.4064/ap-71-2-151-160. http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-151-160/

Cité par Sources :