Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points
Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 113-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a uniqueness theorem for meromorphic functions involving linear differential polynomials generated by them. As consequences of the main result we improve some previous results.
DOI : 10.4064/ap-71-2-113-128
Keywords: uniqueness, sharing values, differential polynomial

Indrajit Lahiri 1

1
@article{10_4064_ap_71_2_113_128,
     author = {Indrajit Lahiri},
     title = {Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points},
     journal = {Annales Polonici Mathematici},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1999},
     doi = {10.4064/ap-71-2-113-128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-113-128/}
}
TY  - JOUR
AU  - Indrajit Lahiri
TI  - Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 113
EP  - 128
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-113-128/
DO  - 10.4064/ap-71-2-113-128
LA  - en
ID  - 10_4064_ap_71_2_113_128
ER  - 
%0 Journal Article
%A Indrajit Lahiri
%T Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points
%J Annales Polonici Mathematici
%D 1999
%P 113-128
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-113-128/
%R 10.4064/ap-71-2-113-128
%G en
%F 10_4064_ap_71_2_113_128
Indrajit Lahiri. Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points. Annales Polonici Mathematici, Tome 71 (1999) no. 2, pp. 113-128. doi : 10.4064/ap-71-2-113-128. http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-113-128/

Cité par Sources :