Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group
Annales Polonici Mathematici, Tome 71 (1999) no. 2, p. 105
We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection $π_1 : V → Γ$ is finite and proper, then $R_V : O(Γ × G) → Im R_V ⊂ O(V)$ has a right inverse
@article{10_4064_ap_71_2_105,
author = {Do Thai and Dinh Hoang},
title = {Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex {Lie} group},
journal = {Annales Polonici Mathematici},
pages = {105--105},
year = {1999},
volume = {71},
number = {2},
doi = {10.4064/ap-71-2-105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-105/}
}
TY - JOUR AU - Do Thai AU - Dinh Hoang TI - Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group JO - Annales Polonici Mathematici PY - 1999 SP - 105 EP - 105 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-105/ DO - 10.4064/ap-71-2-105 LA - en ID - 10_4064_ap_71_2_105 ER -
%0 Journal Article %A Do Thai %A Dinh Hoang %T Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group %J Annales Polonici Mathematici %D 1999 %P 105-105 %V 71 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-2-105/ %R 10.4064/ap-71-2-105 %G en %F 10_4064_ap_71_2_105
Do Thai; Dinh Hoang. Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group. Annales Polonici Mathematici, Tome 71 (1999) no. 2, p. 105. doi: 10.4064/ap-71-2-105
Cité par Sources :