On certain subclasses of multivalently meromorphic close-to-convex maps
Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 251-263
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let Mₚ denote the class of functions f of the form $f(z) = 1/z^p + ∑_{k=0}^∞ aₖz^k$, p a positive integer, in the unit disk E = {|z| 1}, f being regular in 0 |z| 1. Let $L_{n,p}(α) = {f: f ∈ Mₚ, Re{-(z^{p+1}/p) (Dⁿf)'} > α}$, α 1, where $Dⁿf = (z^{n+p} f(z))^{(n)}/(z^p n!)$. Results on $L_{n,p}(α)$ are derived by proving more general results on differential subordination. These results reduce, by putting p =1, to the recent results of Al-Amiri and Mocanu.
Keywords:
meromorphic multivalently close-to-convex, differential subordination, convolution
Affiliations des auteurs :
K. Padmanabhan 1
@article{10_4064_ap_69_3_251_263,
author = {K. Padmanabhan},
title = {On certain subclasses of multivalently meromorphic close-to-convex maps},
journal = {Annales Polonici Mathematici},
pages = {251--263},
year = {1998},
volume = {69},
number = {3},
doi = {10.4064/ap-69-3-251-263},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-251-263/}
}
TY - JOUR AU - K. Padmanabhan TI - On certain subclasses of multivalently meromorphic close-to-convex maps JO - Annales Polonici Mathematici PY - 1998 SP - 251 EP - 263 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-251-263/ DO - 10.4064/ap-69-3-251-263 LA - en ID - 10_4064_ap_69_3_251_263 ER -
K. Padmanabhan. On certain subclasses of multivalently meromorphic close-to-convex maps. Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 251-263. doi: 10.4064/ap-69-3-251-263
Cité par Sources :