On certain subclasses of multivalently meromorphic close-to-convex maps
Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 251-263.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Mₚ denote the class of functions f of the form $f(z) = 1/z^p + ∑_{k=0}^∞ aₖz^k$, p a positive integer, in the unit disk E = {|z| 1}, f being regular in 0 |z| 1. Let $L_{n,p}(α) = {f: f ∈ Mₚ, Re{-(z^{p+1}/p) (Dⁿf)'} > α}$, α 1, where $Dⁿf = (z^{n+p} f(z))^{(n)}/(z^p n!)$. Results on $L_{n,p}(α)$ are derived by proving more general results on differential subordination. These results reduce, by putting p =1, to the recent results of Al-Amiri and Mocanu.
DOI : 10.4064/ap-69-3-251-263
Keywords: meromorphic multivalently close-to-convex, differential subordination, convolution

K. Padmanabhan 1

1
@article{10_4064_ap_69_3_251_263,
     author = {K. Padmanabhan},
     title = {On certain subclasses of multivalently meromorphic close-to-convex maps},
     journal = {Annales Polonici Mathematici},
     pages = {251--263},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {1998},
     doi = {10.4064/ap-69-3-251-263},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-251-263/}
}
TY  - JOUR
AU  - K. Padmanabhan
TI  - On certain subclasses of multivalently meromorphic close-to-convex maps
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 251
EP  - 263
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-251-263/
DO  - 10.4064/ap-69-3-251-263
LA  - en
ID  - 10_4064_ap_69_3_251_263
ER  - 
%0 Journal Article
%A K. Padmanabhan
%T On certain subclasses of multivalently meromorphic close-to-convex maps
%J Annales Polonici Mathematici
%D 1998
%P 251-263
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-251-263/
%R 10.4064/ap-69-3-251-263
%G en
%F 10_4064_ap_69_3_251_263
K. Padmanabhan. On certain subclasses of multivalently meromorphic close-to-convex maps. Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 251-263. doi : 10.4064/ap-69-3-251-263. http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-251-263/

Cité par Sources :