The intersection convolution of relations and the Hahn-Banach type theorems
Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 235-249
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
By introducing the intersection convolution of relations, we prove a natural generalization of an extension theorem of B. Rodrí guez-Salinas and L. Bou on linear selections which is already a substantial generalization of the classical Hahn-Banach theorems. In particular, we give a simple neccesary and sufficient condition in terms of the intersection convolution of a homogeneous relation and its partial linear selections in order that every partial linear selection of this relation can have an extension to a total linear selection.
Keywords:
intersection convolution, additive and homogeneous relations, linear selections, binary intersection property, Hahn-Banach theorems
Affiliations des auteurs :
Árpád Száz 1
@article{10_4064_ap_69_3_235_249,
author = {\'Arp\'ad Sz\'az},
title = {The intersection convolution of relations and the {Hahn-Banach} type theorems},
journal = {Annales Polonici Mathematici},
pages = {235--249},
year = {1998},
volume = {69},
number = {3},
doi = {10.4064/ap-69-3-235-249},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-235-249/}
}
TY - JOUR AU - Árpád Száz TI - The intersection convolution of relations and the Hahn-Banach type theorems JO - Annales Polonici Mathematici PY - 1998 SP - 235 EP - 249 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-235-249/ DO - 10.4064/ap-69-3-235-249 LA - en ID - 10_4064_ap_69_3_235_249 ER -
Árpád Száz. The intersection convolution of relations and the Hahn-Banach type theorems. Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 235-249. doi: 10.4064/ap-69-3-235-249
Cité par Sources :