A discrepancy principle for Tikhonov regularization with approximately specified data
Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 197-205
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Many discrepancy principles are known for choosing the parameter α in the regularized operator equation $(T*T + αI)x_α^δ = T*y^δ$, $|y - y^δ| ≤ δ$, in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and $T*y^δ$ are approximated by Aₙ and $zₙ^δ$ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).
Keywords:
ill-posed problems, minimal norm least-squares solution, Moore-Penrose inverse, Tikhonov regularization, discrepancy principle, optimal rate
Affiliations des auteurs :
M. Thamban Nair 1 ; Eberhard Schock 1
@article{10_4064_ap_69_3_197_205,
author = {M. Thamban Nair and Eberhard Schock},
title = {A discrepancy principle for {Tikhonov} regularization with approximately specified data},
journal = {Annales Polonici Mathematici},
pages = {197--205},
year = {1998},
volume = {69},
number = {3},
doi = {10.4064/ap-69-3-197-205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-197-205/}
}
TY - JOUR AU - M. Thamban Nair AU - Eberhard Schock TI - A discrepancy principle for Tikhonov regularization with approximately specified data JO - Annales Polonici Mathematici PY - 1998 SP - 197 EP - 205 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-197-205/ DO - 10.4064/ap-69-3-197-205 LA - en ID - 10_4064_ap_69_3_197_205 ER -
%0 Journal Article %A M. Thamban Nair %A Eberhard Schock %T A discrepancy principle for Tikhonov regularization with approximately specified data %J Annales Polonici Mathematici %D 1998 %P 197-205 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-197-205/ %R 10.4064/ap-69-3-197-205 %G en %F 10_4064_ap_69_3_197_205
M. Thamban Nair; Eberhard Schock. A discrepancy principle for Tikhonov regularization with approximately specified data. Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 197-205. doi: 10.4064/ap-69-3-197-205
Cité par Sources :