A discrepancy principle for Tikhonov regularization with approximately specified data
Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 197-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Many discrepancy principles are known for choosing the parameter α in the regularized operator equation $(T*T + αI)x_α^δ = T*y^δ$, $|y - y^δ| ≤ δ$, in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and $T*y^δ$ are approximated by Aₙ and $zₙ^δ$ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).
DOI : 10.4064/ap-69-3-197-205
Keywords: ill-posed problems, minimal norm least-squares solution, Moore-Penrose inverse, Tikhonov regularization, discrepancy principle, optimal rate

M. Thamban Nair 1 ; Eberhard Schock 1

1
@article{10_4064_ap_69_3_197_205,
     author = {M. Thamban Nair and Eberhard Schock},
     title = {A discrepancy principle for {Tikhonov} regularization with approximately specified data},
     journal = {Annales Polonici Mathematici},
     pages = {197--205},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {1998},
     doi = {10.4064/ap-69-3-197-205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-197-205/}
}
TY  - JOUR
AU  - M. Thamban Nair
AU  - Eberhard Schock
TI  - A discrepancy principle for Tikhonov regularization with approximately specified data
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 197
EP  - 205
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-197-205/
DO  - 10.4064/ap-69-3-197-205
LA  - en
ID  - 10_4064_ap_69_3_197_205
ER  - 
%0 Journal Article
%A M. Thamban Nair
%A Eberhard Schock
%T A discrepancy principle for Tikhonov regularization with approximately specified data
%J Annales Polonici Mathematici
%D 1998
%P 197-205
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-197-205/
%R 10.4064/ap-69-3-197-205
%G en
%F 10_4064_ap_69_3_197_205
M. Thamban Nair; Eberhard Schock. A discrepancy principle for Tikhonov regularization with approximately specified data. Annales Polonici Mathematici, Tome 69 (1998) no. 3, pp. 197-205. doi : 10.4064/ap-69-3-197-205. http://geodesic.mathdoc.fr/articles/10.4064/ap-69-3-197-205/

Cité par Sources :