Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions
Annales Polonici Mathematici, Tome 69 (1998) no. 2, pp. 155-165

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the existence and multiplicity of positive solutions of the nonlinear equation u''(x) + λh(x)f(u(x)) = 0 subject to nonlinear boundary conditions. The method of upper and lower solutions and degree theory arguments are used.
DOI : 10.4064/ap-69-2-155-165
Keywords: nonlinear boundary value problems, multiplicity of positive solutions, upper and lower solutions, degree theory

D. R. 1 ; Haiyan Wang 1

1
@article{10_4064_ap_69_2_155_165,
     author = {D. R. and Haiyan Wang},
     title = {Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions},
     journal = {Annales Polonici Mathematici},
     pages = {155--165},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1998},
     doi = {10.4064/ap-69-2-155-165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-2-155-165/}
}
TY  - JOUR
AU  - D. R.
AU  - Haiyan Wang
TI  - Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 155
EP  - 165
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-2-155-165/
DO  - 10.4064/ap-69-2-155-165
LA  - en
ID  - 10_4064_ap_69_2_155_165
ER  - 
%0 Journal Article
%A D. R.
%A Haiyan Wang
%T Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions
%J Annales Polonici Mathematici
%D 1998
%P 155-165
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-69-2-155-165/
%R 10.4064/ap-69-2-155-165
%G en
%F 10_4064_ap_69_2_155_165
D. R.; Haiyan Wang. Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions. Annales Polonici Mathematici, Tome 69 (1998) no. 2, pp. 155-165. doi: 10.4064/ap-69-2-155-165

Cité par Sources :