A fixed point method in dynamic processes for a class of elastic-viscoplastic materials
Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 237-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Two problems are considered describing dynamic processes for a class of rate-type elastic-viscoplastic materials with or without internal state variable. The existence and uniqueness of the solution is proved using classical results of linear elasticity theory together with a fixed point method.
Keywords:
viscoplasticity, dynamic processes, Galerkin method, fixed point, internal state variable
Affiliations des auteurs :
A. Amassad 1
@article{10_4064_ap_68_3_237_247,
author = {A. Amassad},
title = {A fixed point method in dynamic processes for a class of elastic-viscoplastic materials},
journal = {Annales Polonici Mathematici},
pages = {237--247},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {1998},
doi = {10.4064/ap-68-3-237-247},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-237-247/}
}
TY - JOUR AU - A. Amassad TI - A fixed point method in dynamic processes for a class of elastic-viscoplastic materials JO - Annales Polonici Mathematici PY - 1998 SP - 237 EP - 247 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-237-247/ DO - 10.4064/ap-68-3-237-247 LA - en ID - 10_4064_ap_68_3_237_247 ER -
%0 Journal Article %A A. Amassad %T A fixed point method in dynamic processes for a class of elastic-viscoplastic materials %J Annales Polonici Mathematici %D 1998 %P 237-247 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-237-247/ %R 10.4064/ap-68-3-237-247 %G en %F 10_4064_ap_68_3_237_247
A. Amassad. A fixed point method in dynamic processes for a class of elastic-viscoplastic materials. Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 237-247. doi: 10.4064/ap-68-3-237-247
Cité par Sources :