Conformal mapping of the domain bounded by a circular polygon with zero angles onto the unit disc
Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 227-236
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The conformal mapping ω(z) of a domain D onto the unit disc must satisfy the condition |ω(t)| = 1 on ∂D, the boundary of D. The last condition can be considered as a Dirichlet problem for the domain D. In the present paper this problem is reduced to a system of functional equations when ∂D is a circular polygon with zero angles. The mapping is given in terms of a Poincaré series.
Keywords:
conformal mapping, boundary value problem, functional equation
Affiliations des auteurs :
Vladimir Mityushev 1
@article{10_4064_ap_68_3_227_236,
author = {Vladimir Mityushev},
title = {Conformal mapping of the domain bounded by a circular polygon with zero angles onto the unit disc},
journal = {Annales Polonici Mathematici},
pages = {227--236},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {1998},
doi = {10.4064/ap-68-3-227-236},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-227-236/}
}
TY - JOUR AU - Vladimir Mityushev TI - Conformal mapping of the domain bounded by a circular polygon with zero angles onto the unit disc JO - Annales Polonici Mathematici PY - 1998 SP - 227 EP - 236 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-227-236/ DO - 10.4064/ap-68-3-227-236 LA - en ID - 10_4064_ap_68_3_227_236 ER -
%0 Journal Article %A Vladimir Mityushev %T Conformal mapping of the domain bounded by a circular polygon with zero angles onto the unit disc %J Annales Polonici Mathematici %D 1998 %P 227-236 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-227-236/ %R 10.4064/ap-68-3-227-236 %G en %F 10_4064_ap_68_3_227_236
Vladimir Mityushev. Conformal mapping of the domain bounded by a circular polygon with zero angles onto the unit disc. Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 227-236. doi: 10.4064/ap-68-3-227-236
Cité par Sources :