Generic saddle-node bifurcation for cascade second order ODEs on manifolds
Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 211-225.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Cascade second order ODEs on manifolds are defined. These objects are locally represented by coupled second order ODEs such that any solution of one of them can represent an external force for the other one. A generic saddle-node bifurcation theorem for 1-parameter families of cascade second order ODEs is proved.
DOI : 10.4064/ap-68-3-211-225
Keywords: cascade, ODE, critical element, transversal, bifurcation

Milan Medveď 1

1
@article{10_4064_ap_68_3_211_225,
     author = {Milan Medve\v{d}},
     title = {Generic saddle-node bifurcation for cascade second order {ODEs} on manifolds},
     journal = {Annales Polonici Mathematici},
     pages = {211--225},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {1998},
     doi = {10.4064/ap-68-3-211-225},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-211-225/}
}
TY  - JOUR
AU  - Milan Medveď
TI  - Generic saddle-node bifurcation for cascade second order ODEs on manifolds
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 211
EP  - 225
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-211-225/
DO  - 10.4064/ap-68-3-211-225
LA  - en
ID  - 10_4064_ap_68_3_211_225
ER  - 
%0 Journal Article
%A Milan Medveď
%T Generic saddle-node bifurcation for cascade second order ODEs on manifolds
%J Annales Polonici Mathematici
%D 1998
%P 211-225
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-211-225/
%R 10.4064/ap-68-3-211-225
%G en
%F 10_4064_ap_68_3_211_225
Milan Medveď. Generic saddle-node bifurcation for cascade second order ODEs on manifolds. Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 211-225. doi : 10.4064/ap-68-3-211-225. http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-211-225/

Cité par Sources :