Commutators of diffeomorphisms of a manifold with boundary
Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 199-210.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on $C^r$-diffeomorphisms are included.
DOI : 10.4064/ap-68-3-199-210
Keywords: Group of diffeomorphisms, simplicity, perfectness, manifold with boundary, fixed point theory

Tomasz Rybicki 1

1
@article{10_4064_ap_68_3_199_210,
     author = {Tomasz Rybicki},
     title = {Commutators of diffeomorphisms of a manifold with boundary},
     journal = {Annales Polonici Mathematici},
     pages = {199--210},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {1998},
     doi = {10.4064/ap-68-3-199-210},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-199-210/}
}
TY  - JOUR
AU  - Tomasz Rybicki
TI  - Commutators of diffeomorphisms of a manifold with boundary
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 199
EP  - 210
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-199-210/
DO  - 10.4064/ap-68-3-199-210
LA  - en
ID  - 10_4064_ap_68_3_199_210
ER  - 
%0 Journal Article
%A Tomasz Rybicki
%T Commutators of diffeomorphisms of a manifold with boundary
%J Annales Polonici Mathematici
%D 1998
%P 199-210
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-199-210/
%R 10.4064/ap-68-3-199-210
%G en
%F 10_4064_ap_68_3_199_210
Tomasz Rybicki. Commutators of diffeomorphisms of a manifold with boundary. Annales Polonici Mathematici, Tome 68 (1998) no. 3, pp. 199-210. doi : 10.4064/ap-68-3-199-210. http://geodesic.mathdoc.fr/articles/10.4064/ap-68-3-199-210/

Cité par Sources :