The law of large numbers and a functional equation
Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 165-175.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We deal with the linear functional equation (E) $g(x) = ∑^r_{i=1} p_i g(c_i x)$, where g:(0,∞) → (0,∞) is unknown, $(p₁,...,p_r)$ is a probability distribution, and $c_i$'s are positive numbers. The equation (or some equivalent forms) was considered earlier under different assumptions (cf. [1], [2], [4], [5] and [6]). Using Bernoulli's Law of Large Numbers we prove that g has to be constant provided it has a limit at one end of the domain and is bounded at the other end.
DOI : 10.4064/ap-68-2-165-175
Keywords: functional equation, law of large numbers, Jensen equation on curves, bounded solutions, difference equation

Maciej Sablik 1

1
@article{10_4064_ap_68_2_165_175,
     author = {Maciej Sablik},
     title = {The law of large numbers and a functional equation},
     journal = {Annales Polonici Mathematici},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1998},
     doi = {10.4064/ap-68-2-165-175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-165-175/}
}
TY  - JOUR
AU  - Maciej Sablik
TI  - The law of large numbers and a functional equation
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 165
EP  - 175
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-165-175/
DO  - 10.4064/ap-68-2-165-175
LA  - en
ID  - 10_4064_ap_68_2_165_175
ER  - 
%0 Journal Article
%A Maciej Sablik
%T The law of large numbers and a functional equation
%J Annales Polonici Mathematici
%D 1998
%P 165-175
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-165-175/
%R 10.4064/ap-68-2-165-175
%G en
%F 10_4064_ap_68_2_165_175
Maciej Sablik. The law of large numbers and a functional equation. Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 165-175. doi : 10.4064/ap-68-2-165-175. http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-165-175/

Cité par Sources :