The law of large numbers and a functional equation
Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 165-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We deal with the linear functional equation (E) $g(x) = ∑^r_{i=1} p_i g(c_i x)$, where g:(0,∞) → (0,∞) is unknown, $(p₁,...,p_r)$ is a probability distribution, and $c_i$'s are positive numbers. The equation (or some equivalent forms) was considered earlier under different assumptions (cf. [1], [2], [4], [5] and [6]). Using Bernoulli's Law of Large Numbers we prove that g has to be constant provided it has a limit at one end of the domain and is bounded at the other end.
Keywords:
functional equation, law of large numbers, Jensen equation on curves, bounded solutions, difference equation
Affiliations des auteurs :
Maciej Sablik 1
@article{10_4064_ap_68_2_165_175,
author = {Maciej Sablik},
title = {The law of large numbers and a functional equation},
journal = {Annales Polonici Mathematici},
pages = {165--175},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {1998},
doi = {10.4064/ap-68-2-165-175},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-165-175/}
}
TY - JOUR AU - Maciej Sablik TI - The law of large numbers and a functional equation JO - Annales Polonici Mathematici PY - 1998 SP - 165 EP - 175 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-165-175/ DO - 10.4064/ap-68-2-165-175 LA - en ID - 10_4064_ap_68_2_165_175 ER -
Maciej Sablik. The law of large numbers and a functional equation. Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 165-175. doi: 10.4064/ap-68-2-165-175
Cité par Sources :