Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$
Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 125-157.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Asymptotic properties of the sequences (a) ${P^j_φ g}_{j=1}^{∞}$ and (b) ${j^{-1} ∑_{i=0}^{j-1} Pⁱ_φ g}_{j=1}^{∞}$, where $P_φ:L¹ → L¹$ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = {f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1}. An operator-theoretic analogue of Rényi's Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov maps in $ℝ^d$. Also the Bernoulli property is proved for a class of smooth Markov maps in $ℝ^d$.
DOI : 10.4064/ap-68-2-125-157
Keywords: invariant measure, Frobenius-Perron operator, expanding map, distortion inequality

Piotr Bugiel 1

1
@article{10_4064_ap_68_2_125_157,
     author = {Piotr Bugiel},
     title = {Distortion inequality for the {Frobenius-Perron} operator and some of its consequences in ergodic theory of {Markov} maps in $\ensuremath{\mathbb{R}}^d$},
     journal = {Annales Polonici Mathematici},
     pages = {125--157},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1998},
     doi = {10.4064/ap-68-2-125-157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-125-157/}
}
TY  - JOUR
AU  - Piotr Bugiel
TI  - Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 125
EP  - 157
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-125-157/
DO  - 10.4064/ap-68-2-125-157
LA  - en
ID  - 10_4064_ap_68_2_125_157
ER  - 
%0 Journal Article
%A Piotr Bugiel
%T Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$
%J Annales Polonici Mathematici
%D 1998
%P 125-157
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-125-157/
%R 10.4064/ap-68-2-125-157
%G en
%F 10_4064_ap_68_2_125_157
Piotr Bugiel. Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$. Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 125-157. doi : 10.4064/ap-68-2-125-157. http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-125-157/

Cité par Sources :