Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$
Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 125-157
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Asymptotic properties of the sequences (a) ${P^j_φ g}_{j=1}^{∞}$ and (b) ${j^{-1} ∑_{i=0}^{j-1} Pⁱ_φ g}_{j=1}^{∞}$, where $P_φ:L¹ → L¹$ is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = {f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1}. An operator-theoretic analogue of Rényi's Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov maps in $ℝ^d$. Also the Bernoulli property is proved for a class of smooth Markov maps in $ℝ^d$.
Keywords:
invariant measure, Frobenius-Perron operator, expanding map, distortion inequality
Affiliations des auteurs :
Piotr Bugiel 1
@article{10_4064_ap_68_2_125_157,
author = {Piotr Bugiel},
title = {Distortion inequality for the {Frobenius-Perron} operator and some of its consequences in ergodic theory of {Markov} maps in $\ensuremath{\mathbb{R}}^d$},
journal = {Annales Polonici Mathematici},
pages = {125--157},
year = {1998},
volume = {68},
number = {2},
doi = {10.4064/ap-68-2-125-157},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-125-157/}
}
TY - JOUR AU - Piotr Bugiel TI - Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$ JO - Annales Polonici Mathematici PY - 1998 SP - 125 EP - 157 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-125-157/ DO - 10.4064/ap-68-2-125-157 LA - en ID - 10_4064_ap_68_2_125_157 ER -
%0 Journal Article %A Piotr Bugiel %T Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$ %J Annales Polonici Mathematici %D 1998 %P 125-157 %V 68 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-125-157/ %R 10.4064/ap-68-2-125-157 %G en %F 10_4064_ap_68_2_125_157
Piotr Bugiel. Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of Markov maps in $ℝ^d$. Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 125-157. doi: 10.4064/ap-68-2-125-157
Cité par Sources :