Randomly connected dynamical systems - asymptotic stability
Annales Polonici Mathematici, Tome 68 (1998) no. 1, pp. 31-50
We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.
@article{10_4064_ap_68_1_31_50,
author = {Katarzyna Horbacz},
title = {Randomly connected dynamical systems - asymptotic stability},
journal = {Annales Polonici Mathematici},
pages = {31--50},
year = {1998},
volume = {68},
number = {1},
doi = {10.4064/ap-68-1-31-50},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-31-50/}
}
TY - JOUR AU - Katarzyna Horbacz TI - Randomly connected dynamical systems - asymptotic stability JO - Annales Polonici Mathematici PY - 1998 SP - 31 EP - 50 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-31-50/ DO - 10.4064/ap-68-1-31-50 LA - en ID - 10_4064_ap_68_1_31_50 ER -
Katarzyna Horbacz. Randomly connected dynamical systems - asymptotic stability. Annales Polonici Mathematici, Tome 68 (1998) no. 1, pp. 31-50. doi: 10.4064/ap-68-1-31-50
Cité par Sources :