Randomly connected dynamical systems - asymptotic stability
Annales Polonici Mathematici, Tome 68 (1998) no. 1, pp. 31-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.
DOI : 10.4064/ap-68-1-31-50
Keywords: dynamical systems, Markov operator, asymptotic stability

Katarzyna Horbacz 1

1
@article{10_4064_ap_68_1_31_50,
     author = {Katarzyna Horbacz},
     title = {Randomly connected dynamical systems - asymptotic stability},
     journal = {Annales Polonici Mathematici},
     pages = {31--50},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1998},
     doi = {10.4064/ap-68-1-31-50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-31-50/}
}
TY  - JOUR
AU  - Katarzyna Horbacz
TI  - Randomly connected dynamical systems - asymptotic stability
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 31
EP  - 50
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-31-50/
DO  - 10.4064/ap-68-1-31-50
LA  - en
ID  - 10_4064_ap_68_1_31_50
ER  - 
%0 Journal Article
%A Katarzyna Horbacz
%T Randomly connected dynamical systems - asymptotic stability
%J Annales Polonici Mathematici
%D 1998
%P 31-50
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-31-50/
%R 10.4064/ap-68-1-31-50
%G en
%F 10_4064_ap_68_1_31_50
Katarzyna Horbacz. Randomly connected dynamical systems - asymptotic stability. Annales Polonici Mathematici, Tome 68 (1998) no. 1, pp. 31-50. doi : 10.4064/ap-68-1-31-50. http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-31-50/

Cité par Sources :