Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice
Annales Polonici Mathematici, Tome 68 (1998) no. 1, pp. 1-16
Asymptotic convergence theorems for nonnegative operators on Banach lattices, on $L^{∞}$, on C(X) and on $L^p(1 ≤ p ∞)$ are proved. The general results are applied to a class of integral operators on L¹.
Keywords:
nonnegative operator, exponentially stationary operator, integral operator, lower function
@article{10_4064_ap_68_1_1_16,
author = {Jolanta Soca{\l}a},
title = {Asymptotic behaviour of the iterates of nonnegative operators on a {Banach} lattice},
journal = {Annales Polonici Mathematici},
pages = {1--16},
year = {1998},
volume = {68},
number = {1},
doi = {10.4064/ap-68-1-1-16},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-1-16/}
}
TY - JOUR AU - Jolanta Socała TI - Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice JO - Annales Polonici Mathematici PY - 1998 SP - 1 EP - 16 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-1-1-16/ DO - 10.4064/ap-68-1-1-16 LA - en ID - 10_4064_ap_68_1_1_16 ER -
Jolanta Socała. Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice. Annales Polonici Mathematici, Tome 68 (1998) no. 1, pp. 1-16. doi: 10.4064/ap-68-1-1-16
Cité par Sources :