Invariant Hodge forms and equivariant splittings of algebraic manifolds
Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 277-283
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let T be a complex torus acting holomorphically on a compact algebraic manifold M and let $ev_∗ :π₁(T,1) → π₁(M,x₀)$ be the homomorphism induced by $ev: T ∋ t ↦ tx₀ ∈ M. We show that for each T-invariant Hodge form Ω on M there is a holomorphic fibration p:M → T whose fibers are Ω-perpendicular to the orbits. Using this we prove that M is T-equivariantly biholomorphic to T × M/T if and only if there is a subgroup Δ of π₁(M) and a Hodge form Ω on M such that $π₁(M) = im ev_∗ × Δ$ and $∫_{β×δ} Ω = 0$ for all $β ∈ im ev_∗$ and δ ∈ Δ.
Keywords:
holomorphic action, fibration, Hodge form, equivariant splitting, algebraic manifold
Affiliations des auteurs :
Michał Sadowski 1
@article{10_4064_ap_67_3_277_283,
author = {Micha{\l} Sadowski},
title = {Invariant {Hodge} forms and equivariant splittings of algebraic manifolds},
journal = {Annales Polonici Mathematici},
pages = {277--283},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {1997},
doi = {10.4064/ap-67-3-277-283},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-277-283/}
}
TY - JOUR AU - Michał Sadowski TI - Invariant Hodge forms and equivariant splittings of algebraic manifolds JO - Annales Polonici Mathematici PY - 1997 SP - 277 EP - 283 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-277-283/ DO - 10.4064/ap-67-3-277-283 LA - en ID - 10_4064_ap_67_3_277_283 ER -
%0 Journal Article %A Michał Sadowski %T Invariant Hodge forms and equivariant splittings of algebraic manifolds %J Annales Polonici Mathematici %D 1997 %P 277-283 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-277-283/ %R 10.4064/ap-67-3-277-283 %G en %F 10_4064_ap_67_3_277_283
Michał Sadowski. Invariant Hodge forms and equivariant splittings of algebraic manifolds. Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 277-283. doi: 10.4064/ap-67-3-277-283
Cité par Sources :