Smoothing a polyhedral convex function via cumulant transformation and homogenization
Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 259-268.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a polyhedral convex function g: ℝⁿ → ℝ ∪ {+∞}, it is always possible to construct a family ${gₜ}_{t>0}$ which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family ${gₜ}_{t>0}$ involves the concept of cumulant transformation and a standard homogenization procedure.
DOI : 10.4064/ap-67-3-259-268
Keywords: polyhedral convex function, smooth approximation, Laplace transformation, cumulant transformation, homogenization, recession function

Alberto Seeger 1

1
@article{10_4064_ap_67_3_259_268,
     author = {Alberto Seeger},
     title = {Smoothing a polyhedral convex function via cumulant transformation and homogenization},
     journal = {Annales Polonici Mathematici},
     pages = {259--268},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {1997},
     doi = {10.4064/ap-67-3-259-268},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-259-268/}
}
TY  - JOUR
AU  - Alberto Seeger
TI  - Smoothing a polyhedral convex function via cumulant transformation and homogenization
JO  - Annales Polonici Mathematici
PY  - 1997
SP  - 259
EP  - 268
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-259-268/
DO  - 10.4064/ap-67-3-259-268
LA  - en
ID  - 10_4064_ap_67_3_259_268
ER  - 
%0 Journal Article
%A Alberto Seeger
%T Smoothing a polyhedral convex function via cumulant transformation and homogenization
%J Annales Polonici Mathematici
%D 1997
%P 259-268
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-259-268/
%R 10.4064/ap-67-3-259-268
%G en
%F 10_4064_ap_67_3_259_268
Alberto Seeger. Smoothing a polyhedral convex function via cumulant transformation and homogenization. Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 259-268. doi : 10.4064/ap-67-3-259-268. http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-259-268/

Cité par Sources :