Smoothing a polyhedral convex function via cumulant transformation and homogenization
Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 259-268
Given a polyhedral convex function g: ℝⁿ → ℝ ∪ {+∞}, it is always possible to construct a family ${gₜ}_{t>0}$ which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family ${gₜ}_{t>0}$ involves the concept of cumulant transformation and a standard homogenization procedure.
Keywords:
polyhedral convex function, smooth approximation, Laplace transformation, cumulant transformation, homogenization, recession function
@article{10_4064_ap_67_3_259_268,
author = {Alberto Seeger},
title = {Smoothing a polyhedral convex function via cumulant transformation and homogenization},
journal = {Annales Polonici Mathematici},
pages = {259--268},
year = {1997},
volume = {67},
number = {3},
doi = {10.4064/ap-67-3-259-268},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-259-268/}
}
TY - JOUR AU - Alberto Seeger TI - Smoothing a polyhedral convex function via cumulant transformation and homogenization JO - Annales Polonici Mathematici PY - 1997 SP - 259 EP - 268 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-259-268/ DO - 10.4064/ap-67-3-259-268 LA - en ID - 10_4064_ap_67_3_259_268 ER -
%0 Journal Article %A Alberto Seeger %T Smoothing a polyhedral convex function via cumulant transformation and homogenization %J Annales Polonici Mathematici %D 1997 %P 259-268 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-259-268/ %R 10.4064/ap-67-3-259-268 %G en %F 10_4064_ap_67_3_259_268
Alberto Seeger. Smoothing a polyhedral convex function via cumulant transformation and homogenization. Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 259-268. doi: 10.4064/ap-67-3-259-268
Cité par Sources :