On the local Cauchy problem for nonlinear hyperbolic functional differential equations
Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 215-232
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order (1) $Dₓz(x,y) = f(x,y,z(x,y),(Wz)(x,y),D_y z(x,y))$ on E, (2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b], where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).
Keywords:
functional differential equations, weak solutions, bicharacteristics, successive approximations
Affiliations des auteurs :
Tomasz Człapiński 1
@article{10_4064_ap_67_3_215_232,
author = {Tomasz Cz{\l}api\'nski},
title = {On the local {Cauchy} problem for nonlinear hyperbolic functional differential equations},
journal = {Annales Polonici Mathematici},
pages = {215--232},
year = {1997},
volume = {67},
number = {3},
doi = {10.4064/ap-67-3-215-232},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-215-232/}
}
TY - JOUR AU - Tomasz Człapiński TI - On the local Cauchy problem for nonlinear hyperbolic functional differential equations JO - Annales Polonici Mathematici PY - 1997 SP - 215 EP - 232 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-215-232/ DO - 10.4064/ap-67-3-215-232 LA - en ID - 10_4064_ap_67_3_215_232 ER -
%0 Journal Article %A Tomasz Człapiński %T On the local Cauchy problem for nonlinear hyperbolic functional differential equations %J Annales Polonici Mathematici %D 1997 %P 215-232 %V 67 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-3-215-232/ %R 10.4064/ap-67-3-215-232 %G en %F 10_4064_ap_67_3_215_232
Tomasz Człapiński. On the local Cauchy problem for nonlinear hyperbolic functional differential equations. Annales Polonici Mathematici, Tome 67 (1997) no. 3, pp. 215-232. doi: 10.4064/ap-67-3-215-232
Cité par Sources :