Normal structure of Lorentz-Orlicz spaces
Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 147-168.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ϕ: ℝ → ℝ₊ ∪ {0} be an even convex continuous function with ϕ(0) = 0 and ϕ(u) > 0 for all u > 0 and let w be a weight function. u₀ and v₀ are defined by u₀ = sup{u: ϕ is linear on (0,u)}, v₀=sup{v: w is constant on (0,v)} (where sup∅ = 0). We prove the following theorem. Theorem. Suppose that $Λ_{ϕ,w}(0,∞)$ (respectively, $Λ_{ϕ,w}(0,1)$) is an order continuous Lorentz-Orlicz space. (1) $Λ_{ϕ,w}$ has normal structure if and only if u₀ = 0 (respectively, $∫_^{v₀} ϕ(u₀) · w 2 and u₀ ∞). (2) $Λ_{ϕ,w}$ has weakly normal structure if and only if $∫_0^{v₀} ϕ(u₀)· w 2$.
DOI : 10.4064/ap-67-2-147-168
Keywords: Lorentz-Orlicz space, normal sturcture, order continuous, Young function

Pei-Kee Lin 1 ; Huiying Sun 1

1
@article{10_4064_ap_67_2_147_168,
     author = {Pei-Kee Lin and Huiying Sun},
     title = {Normal structure of {Lorentz-Orlicz} spaces},
     journal = {Annales Polonici Mathematici},
     pages = {147--168},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1997},
     doi = {10.4064/ap-67-2-147-168},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-147-168/}
}
TY  - JOUR
AU  - Pei-Kee Lin
AU  - Huiying Sun
TI  - Normal structure of Lorentz-Orlicz spaces
JO  - Annales Polonici Mathematici
PY  - 1997
SP  - 147
EP  - 168
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-147-168/
DO  - 10.4064/ap-67-2-147-168
LA  - en
ID  - 10_4064_ap_67_2_147_168
ER  - 
%0 Journal Article
%A Pei-Kee Lin
%A Huiying Sun
%T Normal structure of Lorentz-Orlicz spaces
%J Annales Polonici Mathematici
%D 1997
%P 147-168
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-147-168/
%R 10.4064/ap-67-2-147-168
%G en
%F 10_4064_ap_67_2_147_168
Pei-Kee Lin; Huiying Sun. Normal structure of Lorentz-Orlicz spaces. Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 147-168. doi : 10.4064/ap-67-2-147-168. http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-147-168/

Cité par Sources :