Normal structure of Lorentz-Orlicz spaces
Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 147-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ϕ: ℝ → ℝ₊ ∪ {0} be an even convex continuous function with ϕ(0) = 0 and ϕ(u) > 0 for all u > 0 and let w be a weight function. u₀ and v₀ are defined by u₀ = sup{u: ϕ is linear on (0,u)}, v₀=sup{v: w is constant on (0,v)} (where sup∅ = 0). We prove the following theorem. Theorem. Suppose that $Λ_{ϕ,w}(0,∞)$ (respectively, $Λ_{ϕ,w}(0,1)$) is an order continuous Lorentz-Orlicz space. (1) $Λ_{ϕ,w}$ has normal structure if and only if u₀ = 0 (respectively, $∫_^{v₀} ϕ(u₀) · w 2 and u₀ ∞). (2) $Λ_{ϕ,w}$ has weakly normal structure if and only if $∫_0^{v₀} ϕ(u₀)· w 2$.
Keywords:
Lorentz-Orlicz space, normal sturcture, order continuous, Young function
Affiliations des auteurs :
Pei-Kee Lin 1 ; Huiying Sun 1
@article{10_4064_ap_67_2_147_168,
author = {Pei-Kee Lin and Huiying Sun},
title = {Normal structure of {Lorentz-Orlicz} spaces},
journal = {Annales Polonici Mathematici},
pages = {147--168},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {1997},
doi = {10.4064/ap-67-2-147-168},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-147-168/}
}
TY - JOUR AU - Pei-Kee Lin AU - Huiying Sun TI - Normal structure of Lorentz-Orlicz spaces JO - Annales Polonici Mathematici PY - 1997 SP - 147 EP - 168 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-147-168/ DO - 10.4064/ap-67-2-147-168 LA - en ID - 10_4064_ap_67_2_147_168 ER -
Pei-Kee Lin; Huiying Sun. Normal structure of Lorentz-Orlicz spaces. Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 147-168. doi: 10.4064/ap-67-2-147-168
Cité par Sources :