Univalent harmonic mappings II
Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 131-145.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let a 0 b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= {z: |z| 1}. We consider the class $S_H (U,Ω(a,b))$ of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, $f_z(0) > 0$ and $f_z̅(0) = 0$.
DOI : 10.4064/ap-67-2-131-145
Keywords: univalent harmonic mappings, coefficient bounds, distortion theorems

Albert Livingston 1

1
@article{10_4064_ap_67_2_131_145,
     author = {Albert Livingston},
     title = {Univalent harmonic mappings {II}},
     journal = {Annales Polonici Mathematici},
     pages = {131--145},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1997},
     doi = {10.4064/ap-67-2-131-145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-131-145/}
}
TY  - JOUR
AU  - Albert Livingston
TI  - Univalent harmonic mappings II
JO  - Annales Polonici Mathematici
PY  - 1997
SP  - 131
EP  - 145
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-131-145/
DO  - 10.4064/ap-67-2-131-145
LA  - en
ID  - 10_4064_ap_67_2_131_145
ER  - 
%0 Journal Article
%A Albert Livingston
%T Univalent harmonic mappings II
%J Annales Polonici Mathematici
%D 1997
%P 131-145
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-131-145/
%R 10.4064/ap-67-2-131-145
%G en
%F 10_4064_ap_67_2_131_145
Albert Livingston. Univalent harmonic mappings II. Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 131-145. doi : 10.4064/ap-67-2-131-145. http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-131-145/

Cité par Sources :