Fundamental solutions of the complex Monge-Ampère equation
Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 103-110
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that any positive function on ℂℙ¹ which is constant outside a countable $G_δ$-set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.
Keywords:
plurisubharmonic functions, singularities, order function, Monge-Ampère equation
Affiliations des auteurs :
Halil Celik 1 ; Evgeny Poletsky 1
@article{10_4064_ap_67_2_103_110,
author = {Halil Celik and Evgeny Poletsky},
title = {Fundamental solutions of the complex {Monge-Amp\`ere} equation},
journal = {Annales Polonici Mathematici},
pages = {103--110},
year = {1997},
volume = {67},
number = {2},
doi = {10.4064/ap-67-2-103-110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-103-110/}
}
TY - JOUR AU - Halil Celik AU - Evgeny Poletsky TI - Fundamental solutions of the complex Monge-Ampère equation JO - Annales Polonici Mathematici PY - 1997 SP - 103 EP - 110 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-103-110/ DO - 10.4064/ap-67-2-103-110 LA - en ID - 10_4064_ap_67_2_103_110 ER -
%0 Journal Article %A Halil Celik %A Evgeny Poletsky %T Fundamental solutions of the complex Monge-Ampère equation %J Annales Polonici Mathematici %D 1997 %P 103-110 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-103-110/ %R 10.4064/ap-67-2-103-110 %G en %F 10_4064_ap_67_2_103_110
Halil Celik; Evgeny Poletsky. Fundamental solutions of the complex Monge-Ampère equation. Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 103-110. doi: 10.4064/ap-67-2-103-110
Cité par Sources :