Fundamental solutions of the complex Monge-Ampère equation
Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 103-110.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that any positive function on ℂℙ¹ which is constant outside a countable $G_δ$-set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.
DOI : 10.4064/ap-67-2-103-110
Keywords: plurisubharmonic functions, singularities, order function, Monge-Ampère equation

Halil Celik 1 ; Evgeny Poletsky 1

1
@article{10_4064_ap_67_2_103_110,
     author = {Halil Celik and Evgeny Poletsky},
     title = {Fundamental solutions of the complex {Monge-Amp\`ere} equation},
     journal = {Annales Polonici Mathematici},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1997},
     doi = {10.4064/ap-67-2-103-110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-103-110/}
}
TY  - JOUR
AU  - Halil Celik
AU  - Evgeny Poletsky
TI  - Fundamental solutions of the complex Monge-Ampère equation
JO  - Annales Polonici Mathematici
PY  - 1997
SP  - 103
EP  - 110
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-103-110/
DO  - 10.4064/ap-67-2-103-110
LA  - en
ID  - 10_4064_ap_67_2_103_110
ER  - 
%0 Journal Article
%A Halil Celik
%A Evgeny Poletsky
%T Fundamental solutions of the complex Monge-Ampère equation
%J Annales Polonici Mathematici
%D 1997
%P 103-110
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-103-110/
%R 10.4064/ap-67-2-103-110
%G en
%F 10_4064_ap_67_2_103_110
Halil Celik; Evgeny Poletsky. Fundamental solutions of the complex Monge-Ampère equation. Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 103-110. doi : 10.4064/ap-67-2-103-110. http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-103-110/

Cité par Sources :